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EFFICIENCY BOUNDS FOR MISSING DATA MODELS WITH
SEMIPARAMETRIC RESTRICTIONS

BY BRYAN S. GRAHAM1

This paper shows that the semiparametric efficiency bound for a parameter identi-
fied by an unconditional moment restriction with data missing at random (MAR) coin-
cides with that of a particular augmented moment condition problem. The augmented
system consists of the inverse probability weighted (IPW) original moment restriction
and an additional conditional moment restriction which exhausts all other implications
of the MAR assumption. The paper also investigates the value of additional semipara-
metric restrictions on the conditional expectation function (CEF) of the original mo-
ment function given always observed covariates. In the program evaluation context, for
example, such restrictions are implied by semiparametric models for the potential out-
come CEFs given baseline covariates. The efficiency bound associated with this model
is shown to also coincide with that of a particular moment condition problem. Some
implications of these results for estimation are briefly discussed.

KEYWORDS: Missing data, semiparametric efficiency, propensity score, (augmented)
inverse probability weighting, double robustness, average treatment effects, causal in-
ference.

1. INTRODUCTION

LET Z = (Y ′
1�X

′)′ BE A VECTOR of modelling variables, let {Zi}∞
i=1 be an in-

dependent and identically distributed random sequence drawn from the un-
known distribution F0, let β be a K × 1 unknown parameter vector, and let
ψ(Z�β) be a known vector-valued function of the same dimension.2 The only
prior restriction on F0 is that for some β0 ∈ B ⊂ R

K ,

E[ψ(Z�β0)] = 0�(1)

Chamberlain (1987) showed that the maximal asymptotic precision with which
β0 can be estimated under (1) (subject to identification and regularity con-

1I would like to thank Gary Chamberlain, Jinyong Hahn, Guido Imbens, Michael Jansson, and
Whitney Newey for comments on earlier draft. Helpful discussions with Oliver Linton, Cristine
Pinto, Jim Powell, and Geert Ridder as well as participants in the Berkeley Econometrics Reading
Group and Seminars are gratefully acknowledged. This revision has benefited from Tom Rothen-
berg’s skepticism, discussions with Michael Jansson, Justin McCrary, Jim Powell, and the com-
ments of a co-editor and three especially meticulous/generous anonymous referees. All the usual
disclaimers apply. This is a heavily revised version of material that previously circulated under the
titles “A Note on Semiparametric Efficiency in Moment Condition Models With Missing Data,”
“GMM ‘Equivalence’ for Semiparametric Missing Data Models,” and “Efficient Estimation of
Missing Data Models Using Moment Conditions and Semiparametric Restrictions.”

2Extending what follows to the overidentified case is straightforward.
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ditions) is given by If(β0) = Γ ′
0Ω

−1
0 Γ0, with Γ0 = E[∂ψ(Z�β0)/∂β

′] and Ω0 =
V(ψ(Z�β0))�

3

Now consider the case where a random sequence from F0 is unavailable;
instead, only a selected sequence of samples is available. Let D be a binary se-
lection indicator. When D= 1, we observe Y1 and X; when D= 0, we observe
only X .4 This paper considers estimation of β0 under restriction (1) and the
following additional assumptions.

ASSUMPTION 1.1—Random Sampling: {Zi�Di}∞
i=1 is an independent and

identically distributed random sequence from F0.

ASSUMPTION 1.2—Observed Data: For each unit, we observeD� X , and Y =
DY1�

ASSUMPTION 1.3—Conditional Independence: Y1 ⊥D|X�

ASSUMPTION 1.4 —Overlap: 0 < κ ≤ p0(x) ≤ 1 for p0(x) = Pr(D = 1|
X = x) and for all x ∈ X ⊂ R

dim(x)�

Restriction (1) and Assumptions 1.1–1.4 constitute a semiparametric model
for the data. Henceforth, I refer to this model as the semiparametric missing
data model or the missing at random (MAR) setup. Robins, Rotnitzky, and
Zhao (1994, Proposition 2.3, p. 850) derived the efficient influence function
for this problem and proposed a locally efficient augmented inverse probability
weighting (AIPW) estimator (cf. Scharfstein, Rotnitzky, and Robins (1999),
Bang and Robins (2005), Tsiatis (2006)). Cheng (1994), Hahn (1998), Hirano,
Imbens, and Ridder (2003), Imbens, Newey, and Ridder (2005), and Chen,
Hong, and Tarozzi (2008) developed globally efficient estimators.

The MAR setup has been applied to a number of important econometric
and statistical problems, including program evaluation as surveyed by Imbens
(2004), nonclassical measurement error (e.g., Robins, Hsieh, and Newey
(1995), Chen, Hong, and Tamer (2005)), missing regressors (e.g., Robins, Rot-
nitzky, and Zhao (1994)), attrition in panel data (e.g., Robins, Rotnitzky,
and Zhao (1995), Robins and Rotnitzky (1995), Wooldridge (2002)), and
M-estimation under variable probability sampling (e.g., Wooldridge (1999a,

3Throughout uppercase letters denote random variables, lowercase letters denote specific re-
alizations of them, and calligraphic letters denote their support. I use the notation E[A|c] =
E[A|C = c], V(A|c)= Var(A|C = c), and C(A�B|c)= Cov(A�B|C = c)�

4An earlier version of this paper considered the slightly more general setup with ψ(Z�β) =
ψ1(Y1�X�β) − ψ0(Y0�X�β) with (X�Y) observed, where Y = DY1 + (1 − D)Y0� Results for
this extended model, which contains the standard causal inference model and the two-sample
instrumental variables model as special cases (cf. Imbens (2004), Angrist and Krueger (1992)),
follow directly and straightforwardly from those outlined below.
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2007)). Chen, Hong, and Tarozzi (2004), Wooldridge (2007), and Graham,
Pinto, and Egel (2010) discussed several other applications.

The maximal asymptotic precision with which β0 can be estimated under the
MAR setup has been characterized by Robins, Rotnitzky, and Zhao (1994) and
is given by

Im(β0)= Γ ′
0Λ

−1
0 Γ0�(2)

with Λ0 = E[Σ0(X)/p0(X)+ q(X;β0)q(X;β0)
′], where Σ0(x)= V(ψ(Z�β0)|

x) and q(x;β)= E[ψ(Z�β)|x]�
The associated efficient influence function, also due to Robins, Rotnitzky,

and Zhao (1994), is given by

φ(z�θ0)= Γ −1
0 ×

{
d

p0(x)
ψ(z�β0)− q(x;β0)

p0(x)
(d−p0(x))

}
(3)

for θ= (p�q′�β′)′�
The calculation of (2) is now standard. Knowledge of (2) is useful because it

quantifies the cost—in terms of asymptotic precision—of the missing data and
because it can be used to verify whether a specific estimator for β0 is efficient.
To simplify what follows, I will explicitly assume that Im(β0) is well defined
(i.e., that all its component expectations exist and are finite, and that all its
component matrices are nonsingular).

This paper shows that the semiparametric efficiency bound for β0 under
the MAR setup coincides with the bound for a particular augmented moment
condition problem. The augmented system consists of the inverse probability
of observation weighted (IPW) original moment restriction (1) and an addi-
tional conditional moment restriction that exhausts all other implications of
the MAR setup. This general equivalence result, while implicit in the form of
the efficient influence function (3), is apparently new. It provides fresh intu-
itions for several “paradoxes” in the missing data literature, including the well
known results that projection onto, or weighting by the inverse of, a known
propensity score results in inefficient estimates (e.g., Hahn (1998), Hirano, Im-
bens, and Ridder (2003)), that smoothness and exclusion priors on the propen-
sity score do not increase the precision with whichβ0 can be estimated (Robins,
Hsieh, and Newey (1995), Robins and Rotnitzky (1995), Hahn (1998, 2004)),
and that weighting by a nonparametric estimate of the propensity score results
in an efficient estimator (Hirano, Imbens, and Ridder (2003); cf. Hahn (1998),
Wooldridge (2007), Prokhorov and Schmidt (2009), Hitomo, Nishiyama, and
Okui (2008)).

This paper also analyzes the effect of imposing additional semiparamet-
ric restrictions on the conditional expectation function (CEF) q(x;β) =
E[ψ(Z�β)|x]. If ψ(Z�β) = Y1 − β, as when the target parameter is β0 =
E[Y1]� then such restrictions may arise from prior information on the form
of E[Y1|x]. Such restrictions may arise in other settings as well. For example,
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if the goal is to estimate a vector of linear predictor coefficients in the pres-
ence of missing regressors, then a semiparametric model for the CEFs of the
missing regressors given always observed variables generates restrictions on
the form of q(x;β) (cf. Robins, Rotnitzky, and Zhao (1994)).5

Formally I consider the semiparametric model defined by restriction (1), As-
sumptions 1.1–1.4 and the following additional assumption.

ASSUMPTION 1.5—Functional Restriction: For X = (X ′
1�X

′
2)

′ let

E[ψ(Z�β0)|x] = q(x�δ0�h0(x2);β0)�

where q(x�δ�h(x2);β) is a knownK×1 function, δ is a J×1 finite-dimensional
unknown parameter, and h(·) is an unknown function mapping from a subset of
X2 ⊂ R

dim(X2) into H ⊂ R
P .

To the best of my knowledge, the variance bound for this problem—the
MAR setup with “functional” restrictions—has not been previously calculated.
In an innovative paper, Wang, Linton, and Härdle (2004) considered a special
case of this model where ψ(Z�β) = Y1 − β. They imposed a partial linear
structure, as in Engle, Granger, Rice, and Weiss (1986), on E[Y1|x] such that
q(x�δ0�h0(x2);β0)= x′

1δ0 + h0(x2)−β0. In making their variance bound cal-
culation, they assumed that the conditional distribution ofY1 givenX is normal
with a variance that does not depend on X . They did not provide a bound for
the general case, but conjectured that it is “very complicated” (Wang, Linton,
and Härdle (2004, p. 338)). The result given below extends their work to mo-
ment condition models, general forms for q(x�δ�h(x2);β), and, importantly,
does not require that ψ(Z�β) be conditionally normally distributed and/or ho-
moscedastic.

Augmenting the MAR setup with Assumption 1.5 generates a middle ground
between the fully parametric likelihood-based approaches to missing data de-
scribed by Little and Rubin (2002) and those which leave E[ψ(Z�β0)|x] unre-
stricted (e.g., Cheng (1994), Hahn (1998), Hirano, Imbens, and Ridder (2003)).
Likelihood-based approaches are very sensitive to misspecification (cf. Imbens
(2004)), while approaches which utilize only the basic MAR setup require high
dimensional smoothing which may deleteriously affect small sample perfor-
mance (cf. Wang, Linton, and Härdle (2004), Ichimura and Linton (2005)).
Assumption 1.5 is generally weaker than a parametric specification for the
conditional distribution of ψ(Z�β0) given X , but at the same time reduces
the dimension of the nonparametric smoothing problem. Below I show how to
efficiently exploit prior information on the form of E[ψ(Z�β0)|x]. I also pro-
vide conditions under which consistent estimation of β0 is possible even if the
exploited information is incorrect.

5The formation of predictive models of this type is the foundation of the imputation approach
to missing data described by Little and Rubin (2002).
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Section 2 reports the first result of the paper: an equivalence between the
MAR setup and a particular method-of-moments problem. Equivalence, which
is suggested by the form of the efficient influence function derived by Robins,
Rotnitzky, and Zhao (1994), was previously noted for special cases by Newey
(1994a) and Hirano, Imbens, and Ridder (2003). I discuss the connection be-
tween their results and the general result provided below. I also highlight some
implications of the equivalence result for understanding various aspects of the
MAR setup. Section 3 calculates the variance bound for β0 when the MAR
setup is augmented by Assumption 1.5. I discuss when Assumption 1.5 is likely
to be informative and also when consistent estimation is possible even if it is
erroneously maintained.

2. EQUIVALENCE RESULT

Under the MAR setup, the inverse probability weighted (IPW) moment con-
dition

E

[
D

p0(X)
ψ(Z�β0)

]
= 0(4)

is valid (e.g., Hirano, Imbens, and Ridder (2003), Wooldridge (2007)). The
conditional moment restriction

E

[
D

p0(X)
− 1

∣∣∣X]
= 0 ∀X ∈ X(5)

also holds and nonparametrically identifies p0(x)� While the terminology is
inexact, in what follows I call (4) the identifying moment and (5) the auxiliary
moment.

Consider the case where p0(x) is known such that (5) is truly an auxiliary
moment. One efficient way to exploit the information (5) contains is, following
Newey (1994a) and Brown and Newey (1998), to reduce the sampling variation
in (4) by subtracting from it the fitted value associated with its regression onto
the infinite-dimensional vector of unconditional moment functions implied by
(5)6:

s(Z�θ0)= D

p0(X)
ψ(Z�β0)− E

∗
[

D

p0(X)
ψ(Z�β0)

∣∣∣∣ D

p0(X)
− 1;X

]

= D

p0(X)
ψ(Z�β0)− q(X;β0)

p0(X)
(D−p0(X))�

6The notation E∗[Y |X;Z] denotes the (mean squared error minimizing) linear predictor of Y
given X within a subpopulation homogenous in Z:

E
∗[Y |X;Z] =X ′π(Z)� π(Z)= E[XX ′|Z]−1 × E[XY |Z]�

Wooldridge (1999b, Section 4) collected some useful results on conditional linear predictors. See
also Newey (1990) and Brown and Newey (1998).
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That this population residual is equal to the efficient score function derived by
Robins, Rotnitzky, and Zhao (1994) strongly suggests an equivalence between
the generalized method-of-moments (GMM) problem defined by restrictions
(4) and (5) and the MAR setup outlined above. One way to formally show this
is to verify that the efficiency bounds for β0 in the two problems coincide.7
The bound for β0 under the MAR setup is given in (2) above, while under the
moment problem, it is established by the following theorem.

THEOREM 2.1—GMM Equivalence: Suppose that (i) the distribution ofZ has
a known, finite support, (ii) there is some β0 ∈ B ⊂ R

K and ρ0 = (ρ1� � � � � ρL)
′,

where ρl = p0(xl) ∈ [κ�1] for each l = 1� � � � �L and some 0 < κ < 1 (with
X = {x1� � � � � xL} the known support of X) such that restrictions (4) and (5)
hold, (iii) Λ0 and Im(β0) = Γ ′

0Λ
−1
0 Γ0 are nonsingular, and (iv) other regularity

conditions hold (cf. Chamberlain (1992b, Section 2)), then Im(β0) is the Fisher
information bound for β0�

All proofs are provided in the Supplemental Material (Graham (2011)).
The proof of Theorem 2.1 involves only some tedious algebra and a straight-

forward application of Lemma 2 of Chamberlain (1987). Assuming that Z has
known, finite support makes the problem fully parametric. The unknown para-
meters are the probabilities associated with each possible realization of Z, the
values of the propensity score at each of the L mass points of the distribution
of X , ρ0 = (ρ1� � � � � ρL)

′, and the parameter of interest, β0�
The multinomial assumption is not apparent in the form of Im(β0), which

involves only conditional expectations of certain functions of the data. This
suggests that the bound holds in general, since any F0 which satisfies (4) and
(5) can be arbitrarily well approximated by a multinomial distribution also sat-
isfying the restrictions. Chamberlain (1992a, Theorem 1) demonstrated that
this is indeed the case. Therefore, Im(β0)

−1 is the maximal asymptotic preci-
sion, in the sense of Hájek’s (1972) local minimax approach to efficiency, with
which β0 can be estimated when the only prior restrictions on F0 are (4) and
(5). Since this variance bound coincides with (2), I conclude that (4) and (5)
exhaust all of the useful prior restrictions implied by the MAR setup.8

The connection between semiparametrically efficient estimation of moment
condition models with missing data and augmented systems of moment restric-
tions has been noted previously for the special case of data missing completely

7An alternative approach to showing equivalency would involve verifying Newey’s (2004) mo-
ment spanning condition for efficiency.

8A referee made the insightful observation that the moment condition model (4) and (5) and
the MAR setup are equivalent in the stronger sense that they impose identical restrictions on the
observed data. This, of course, also implies that they contain identical information on β0. The
complete data vector is given by (D�X�Y1), with only (D�X�Y)= (D�X�DY1) observed. Since
Y1 is not observed whenever D = 0, we are free to specify its conditional distribution given X
and D = 0 as desired. Choosing Y1|X�D = 0

D∼ Y1|X�D = 1 ensures conditional independence
(Assumption 1.3). Manipulating the identifying moment (4), we then have, writing ψ(Z�β0) =
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at random (MCAR). In that case, Assumptions 1.1–1.4 hold with p0(X) equal
to a (perhaps known) constant. Newey (1994a) showed that an efficient esti-
mate of β0 can be based on the pair of moment restrictions

E[Dψ(Z�β0)] = 0� C(D�q(X;β0))= 0�

with q(X;β) as defined above. Hirano, Imbens, and Ridder (2003) discussed
a related example with X binary and the data also MCAR. In their example,
efficient estimation is possible with only a finite number of unconditional mo-
ment restrictions. Theorem 2.1 provides a formal generalization of the Newey
(1994a) and Hirano, Imbens, and Ridder (2003) examples to the missing at
random (MAR) case.

The method-of-moments formulation of the MAR setup provides a useful
framework for understanding several apparent paradoxes found in the miss-
ing data literature. As a simple example, consider Hahn’s (1998, pp. 324–325)
result that projection onto a known propensity score may be harmful for es-
timation of β0 = E[Y1]. Formally, he showed that, for p0(x)=Q0 constant in
x and known, the complete-case estimator, β̂cc = ∑N

i=1DiY1i/
∑N

i=1Di� while
consistent, is inefficient. Observe that for the constant propensity score case,
β̂cc is the sample analog of the population solution to (4). It consequently
makes no use of any information contained in the auxiliary moment (5). How-
ever, that moment will be informative for β0 if q(x;β0)= E[Y1|x] − β0 varies
with x, consistent with Hahn’s (1998) finding that the efficiency loss associ-
ated with β̂cc is proportional to V(q(X;β0)). Similar reasoning explains why
weighting by the (inverse of) the known propensity score is generally ineffi-
cient (cf. Robins, Rotnitzky, and Zhao (1994), Hirano, Imbens, and Ridder
(2003), Wooldridge (2007)). The known weights estimator ignores the infor-
mation contained in (5).

That smoothness and exclusion priors on the propensity score do not lower
the variance bound also has a GMM interpretation. Consider the case where
the propensity score belongs to a parametric family p(X;η0)� If η0 is known,
then an efficient GMM estimator based on (4) and (5) is given by the solution

ψ(X�Y1�β0),

E

[
D

p0(X)
ψ(X�Y�β0)

]
= E

[
p0(X)E

[
D

p0(X)
ψ(X�DY1�β0)

∣∣∣X�D= 1
]]

= E
[
E[ψ(X�DY1�β0)|X�D= 1]]

= E
[
E[ψ(X�Y1�β0)|X]]�

which yields (1). Finally, the auxiliary restriction (5) ties down the conditional distribution of
D given X and ensures Assumption 1.4 is satisfied. I thank Michael Jansson for several helpful
discussions on this point.
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to

1
N

N∑
i=1

s(η0� q̂� β̂)

= 1
N

N∑
i=1

{
Di

p(Xi;η0)
ψ(Zi� β̂)− q̂(Xi; β̂)

p(Xi;η0)
(Di −p(Xi;η0))

}

= 0�

with q̂(x; β̂) a consistent nonparametric estimate of E[ψ(Z�β0)|x]. Now con-
sider the effect of replacing η0 with the consistent estimate η̂. From Newey and
McFadden (1994, Theorem 6.2), this replacement does not change the first or-
der asymptotic sampling distribution of β̂ because E[∂s(η0� q0�β0)/∂η

′] = 0�
Furthermore, if the known propensity score is replaced by a consistent non-
parametric estimate, p̂(x), then the sampling distribution of β̂ is also unaf-
fected (Newey (1994b, Proposition 3, p. 1360)). Since the M-estimate of β0

based on its efficient score function has the same asymptotic sampling distri-
bution whether the propensity score is set equal to the truth or, instead, to a
noisy, but consistent, estimate, knowledge of its form cannot increase the pre-
cision with which β0 can be estimated.

Another intuition for redundancy of knowledge of the propensity score can
be found by inspecting the information bound for the multinomial problem.
Under the conditions of Theorem 2.1, calculations provided in the Supple-
mental Material (Graham (2011)) imply that the GMM estimates of β0 and ρ0

(recall that ρ0 contains the values for the propensity score at each of the mass
points of the distribution of X) have an asymptotic sampling distribution of

√
N

([
ρ̂

β̂

]
−

[
ρ0

β0

])
D→ N

([
0
0

]
�

[ Im(ρ0)
−1 0

0 Im(β0)
−1

])
�

with Im(β0) as defined in (2) and Im(ρ0) as defined in the Supplement Mate-
rial. As is well known, under block diagonality, sampling error in ρ̂ does not
affect, at least to first order, the asymptotic sampling properties of β̂. While
block diagonality is formally only a feature of the multinomial problem, the re-
sult nonetheless provides another useful intuition for understanding why prior
knowledge of the propensity score is not valuable asymptotically.

Finally, the redundancy of knowledge of the propensity score combined with
the structure of the equivalent GMM problem, suggests why the IPW estima-
tor based on a nonparametric estimate of the propensity score is semiparamet-
rically efficient (Hirano, Imbens, and Ridder (2003)): when a nonparametric
estimate of the propensity score is used, the sample analogs of both (4) and (5)
are satisfied. In contrast, the IPW estimator based on a parametric estimate of
the propensity score will only satisfy a finite number of the moment conditions
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implied by (5); hence, while it will be more efficient than the estimator that
weights by the true propensity score (e.g., Wooldridge (2007)), it will be less
efficient than the one proposed by Hirano, Imbens, and Ridder (2003).

3. SEMIPARAMETRIC FUNCTIONAL RESTRICTIONS

Consider the MAR setup augmented by Assumption 1.5. To the best of my
knowledge, the maximal asymptotic precision with which β0 can be estimated
in this model has not been previously characterized. To calculate the bound for
this problem, I first consider the conditional moment problem defined by (4),
(5), and

E
[
ρ(Z�δ0�h0(X2);β0)|X

] = 0�(6)

with ρ(Z�δ0�h0(X2);β0)=ψ(Z�β0)− q(x�δ0�h0(x2);β0)� I apply Chamber-
lain’s (1992a) approach to this problem to calculate a variance bound for β0.
I then show that this bound coincides with the semiparametric efficiency bound
for the problem defined by restriction (1) and Assumptions 1.1–1.5 using the
methods of Bickel, Klaassen, Ritov, and Wellner (1993). The value of first con-
sidering the conditional moment problem is that it provides a conjecture for
the form of the efficient influence function, therefore sidestepping the need to
directly calculate what is evidently a complicated projection.

To present these results, I begin by letting

q0(X)= q(X�δ0�h0(X2);β0)�

ρ(Z;β0)=ψ(Z�β0)− q0(X)�

P×P
Υ h

0 (X2)= E

[
D

(
∂q0(X)

∂h′

)′
Σ0(X)

−1

(
∂q0(X)

∂h′

)∣∣∣X2

]
�

K×J
Υ hδ

0 (X2)= E

[
D

(
∂q0(X)

∂h′

)′
Σ0(X)

−1

(
∂q0(X)

∂δ′

)∣∣∣X2

]
�

K×J
G0(X)= ∂q0(X)

∂δ′ −
(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)�

K×P
H0(X2)= E

[
∂q0(X)

∂h′

∣∣∣X2

]
�

J×J
I f

m(δ0)= E[DG0(X)
′Σ0(X)

−1G0(X)]�

and

K×K
Ξ0 = E[H0(X2)Υ

h
0 (X2)

−1H0(X2)
′] + E[G0(X)]I f

m(δ0)
−1

E[G0(X)]′

+ E[q0(X)q0(X)
′]�
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The variance bound for β0 in the conditional moment problem defined by
(4), (5), and (6) is established by the following theorem.

THEOREM 3.1 —Efficiency With Functional Restrictions, Part 1: Suppose
that (i) the distribution of Z has a known, finite support, (ii) there is some β0 ∈
B ⊂ RK� ρ0 = (ρ1� � � � � ρL)

′, where ρl = p0(xl) ∈ [κ�1] for each l= 1� � � � �L and
some 0 < κ < 1 (with X = {x1� � � � � xL} the known support of X), δ0 ∈ D ⊂ R

J ,
and h0(x2�m)= λ0�m ∈ L ⊂ R

P for eachm= 1� � � � �M (with X2 = {x2�1� � � � � x2�M}
the known support ofX2) such that restrictions (4), (5), and (6) hold, (iii)Ξ0 and
I f

m(β0)= Γ ′
0Ξ

−1
0 Γ0 are nonsingular, and (iv) other regularity conditions hold (cf.

Chamberlain (1992b, Section 2)), then I f
m(β0) is the Fisher information bound

for β0�

Note that ifX1 = ∅ andX2 =X such that E[ψ(Z�β0)|x] is unrestricted, then
I f

m(β0) simplifies to Im(β0) above. Therefore, Theorem 2.1 may be viewed as a
special case of Theorem 3.1. As with Theorem 2.1, the validity of the bound for
the non-multinomial case follows from Theorem 1 of Chamberlain (1992a).

The form of Ξ0 suggests a candidate efficient influence function of

φf
β(Z�η0�β0)= Γ −1

0

{
DH0(X2)Υ

h
0 (X2)

−1

(
∂q0(X)

∂h′

)′
(7)

×Σ0(X)
−1ρ(Z;β0)

+DE[G0(X)]I f
m(δ0)

−1G0(X)
′

×Σ0(X)
−1ρ(Z;β0)+ q(X;β0)

}
�

where η= (h�δ�H�Υh�Υhδ�Σ�G)� with G= E[G(X)]. Note that each of the
three components of (7) is mutually uncorrelated. The next theorem verifies
that (7) is the efficient influence function under the MAR setup with Assump-
tion 1.5 also imposed.

THEOREM 3.2—Efficiency With Functional Restrictions, Part 2: The semi-
parametric efficiency bound for β0 in the problem defined by restriction (1) and
Assumptions 1.1–1.5 is equal to I f

m(β0) with an efficient influence function of
φf
β(Z�η0�β0).

Theorem 3.1 implies that restriction (6) can be exploited to more efficiently
estimate β0. However, its use also carries risk: if false, yet nevertheless erro-
neously maintained by the data analyst, an inconsistent estimate of β0 may re-
sult. This tension, between efficiency and robustness is formalized by the next
two propositions, which together provide guidance as to whether prior infor-
mation of the type given by Assumption 1.5 should be utilized in practice.
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The first proposition characterizes the magnitude of the efficiency gain as-
sociated with correctly exploiting Assumption 1.5. Define

K×1
ξ1(Z�η0�β0)=D

{
IK

p0(X)

−H0(X2)Υ
h
0 (X2)

−1

(
∂q0(X)

∂h′

)′
Σ0(X)

−1

}
ρ(Z;β0)�

J×1
ξ2(Z�η0�β0)=DG0(X)

′Σ0(X)
−1ρ(Z;β0)�

PROPOSITION 3.1: Under (1) and Assumptions 1.1–1.5,

Im(β0)
−1 − I f

m(β0)
−1 = Γ −1

0 (V(ξ1)− C(ξ1� ξ
′
2)V(ξ2)

−1
C(ξ1� ξ

′
2)

′)Γ −1′
0(8)

≥ 0�

Equation (8) has an intuitive interpretation. The first term in parentheses,

V(ξ1)= E

[
Σ0(X)

p0(X)
−H0(X2)Υ

h
0 (X2)

−1H0(X2)
′
]
�

equals the asymptotic variance reduction that would be available by addition-
ally imposing restriction (6) if δ0 were known.

The additional (asymptotic) sampling uncertainty induced by having to esti-
mate δ0 is captured by the second term

C(ξ1� ξ2)V(ξ2)
−1

C(ξ1� ξ2)= E[G0(X)]I f
m(δ0)

−1
E[G0(X)]′�

where I f
m(δ0) is the information bound for δ0 in the semiparametric regression

problem (cf. Chamberlain (1992a)):

Dψ(Z�β0)=Dq(X�δ0�h0(X2);β0)+DV �
E[V |X�D= 1] = E[V |X] = 0�

The more precisely determined is δ0, the greater the efficiency gain from im-
posing Assumption 1.5. The size of E[G0(X)] also governs the magnitude of
the efficiency gain. Conditional on X2, ( ∂q0(X)

∂h′ )Υ
h
0 (X2)

−1Υhδ
0 (X2) is a weighted
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linear predictor of ∂q0(X)

∂δ′ given ∂q0(X)

∂h′ in the D= 1 subpopulation. That is,9(
∂q0(X)

∂h′

)
Υh

0 (X2)
−1Υhδ

0 (X2)

= E
∗
Σ0(X)

[
∂q0(X)

∂δ′

∣∣∣∣∂q0(X)

∂h′ ;X2�D= 1
]
�

and hence G0(X) is equal to the difference between ∂q0(X)

∂δ′ and its predicted
value based on a weighted least squares regression in the D = 1 subpopula-
tion. The average of these differences, E[G0(X)], is taken across the entire
population; it will be large in absolute value when the distribution ofX1 condi-
tional on X2 differs in the D= 1 versus D= 0 subpopulations. This will occur
whenever X1 is highly predictive for missingness (conditional on X2). In such
situations, the efficiency costs of sampling uncertainty in δ̂ are greater (rela-
tive to the known δ0 case) because estimation of β0 requires greater levels of
extrapolation.

An example clarifies the discussion given above. Assume that ψ(Z�β0) =
Y1 −β0 with

q(X�δ0�h0(X2);β0)=X ′
1δ0 + h0(X2)−β0�

This is the model considered by Wang, Linton, and Härdle (2004). In addition
to being of importance in its own right, it provides insight into the program
evaluation problem (where the means of two missing outcomes, as opposed
to just one, need to be estimated). The Wang, Linton, and Härdle (2004) prior
restriction includes the condition that V(Y1|X)= σ2

1 is constant inX� For clar-
ity of exposition, I also assume homoscedasticity holds, but that this fact is not
known by the econometrician. Let e0(X2)= E[p(X)|X2] = Pr(D= 1|X2); spe-
cializing the general results given above to this model and evaluating (8) gives

Im(β0)
−1 − I f

m(β0)
−1 = σ2

1

{
E

[
E

[
1

p(X)

∣∣∣X2

]
− 1
e0(X2)

]

− (
E
[
E[X1|X2] − E[X1|X2�D= 1]])′

× (
E
[
E[X1|X2] − E[X1|X2�D= 1]])

/E[e0(X2)V(X1|X2�D= 1)]
}

≥ 0�

9The notation E
∗
ω(X)[Y |X;Z�D= 1] denotes the weighted conditional linear predictor

E
∗
ω(X)[Y |X;Z�D= 1] =XE[DXω(X)−1X ′|Z]−1 × E[DXω(X)−1Y |Z]�

This is the population analog of the fitted value from a generalized least squares regression in a
subpopulation homogenous in Z and with D= 1�
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which shows that the efficiency gain associated with correctly exploiting As-
sumption 1.5 reflects three forces. First, substantial convexity in p(X)−1, which
will occur when overlap is limited, increases the efficiency gain.10 This gain re-
flects the semiparametric restriction allowing for extrapolation in the presence
of conditional covariate imbalance. The next two effects reflect the fact that
the first source of efficiency gain is partially nullified by having to estimate δ0.
If X1 varies strongly given X2 in the D = 1 subpopulation, then the informa-
tion for δ0 is large, which, in turn, increases the precision with which β0 may
be estimated. On the other hand, if there are large (average) differences in the
conditional mean of X1 given X2 across the D= 1 and D= 0 subpopulations,
then estimating β0 requires greater extrapolation, which, when δ0 is unknown,
decreases the precision with which it may be estimated.

Proposition 3.1 provides insight into when correctly imposing Assump-
tion 1.5 is likely to be informative. A related question concerns the conse-
quences of misspecifying the form of q(X�δ�h(X2);β). Under such misspecifi-
cation, the conditional moment restriction (6) will be invalid. Nevertheless, the
efficient score function may continue to have an expectation of zero at β= β0.
This suggest that an M-estimator based on an estimate of the efficient score
function may be consistent even if Assumption 1.5 does not hold. The follow-
ing proposition provides one set of conditions under which such a robustness
property holds.

PROPOSITION 3.2—Double Robustness: Let q∗(X) = q(X�δ∗�h∗(X2);β0)
with δ∗ and h∗(X2) arbitrary, let ρ∗(Z;β0) = ψ(Z�β0) − q∗(X), and redefine
Σ0(X) = V(ρ∗(Z;β0)|X)� H0(X2) = E[ ∂q∗(X)

∂h′ |X2] and Υh
0 (X2)� Υ

hδ
0 (X2), and

G0 similarly. Under restriction (1) and Assumptions 1.1–1.4, φf
β(Z�η�β0) is

mean zero if either (i) β= β0� η= η0 and Assumption 1.5 holds or (ii) β= β0�

η = η∗ = (h∗� δ∗�H0�Υ
h
0 �Υ

hδ
0 �Σ0�G0), and (a) p0(x) = e0(x2) for all x ∈ X �

(b) Σ0(x) = Θ0(x2) for all x ∈ X , and (c) at least one element of h∗(x2) enters
linearly in each row of q∗(X)�

Note that there is a tension between the robustness property of Proposi-
tion 3.2 and the efficiency gain associated with Assumption 1.5. Mean-zeroness
of φf

β(Z�η�β0) under misspecification requires that those variables enter-
ing q(X�δ�h(X2);β0) parametrically do not affect either the probability of
missingness or the conditional variance of the moment function (1). Under
such conditions, an estimator based on φf

β(Z�η�β0) will perform no better,
at least asymptotically, than one based on the efficient score function derived
by Robins, Rotnitzky, and Zhao (1994). In particular, we have the following
implication.

10When some subpopulations have low propensity scores, E[1/p(X)|X2]− 1/E[p(X)|X2] will
tend to be large (Jensen’s inequality).
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COROLLARY 3.1: Under the conditions of part (ii) of Proposition 3.2,

Im(β0)
−1 − I f

m(β0)
−1 = 0�

Collectively Propositions 3.1 and 3.2 suggest that estimation while maintain-
ing Assumption 1.5 will be most valuable when the econometrician is highly
confident in the imposed semiparametric restriction.
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