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Abstract

Many economic activities are embedded in networks: sets of agents and the (often)
rivalrous relationships connecting them to one another. Input sourcing by firms, in-
terbank lending, scientific research, and job search are four examples, among many,
of networked economic activities. Motivated by the premise that networks’ struc-
tures are consequential, this chapter describes econometric methods for analyzing
them. I emphasize (i) dyadic regression analysis incorporating unobserved agent-
specific heterogeneity and supporting causal inference, (ii) techniques for estimating,
and conducting inference on, summary network parameters (e.g., the degree distribu-
tion or transitivity index); and (iii) empirical models of strategic network formation
admitting interdependencies in preferences. Current research challenges and open
questions are also discussed.
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1 Introduction and summary

Many economic activities are embedded in networks: sets of agents and the (often)
rivalrous relationships connecting them to one another. Firms generally buy and sell
inputs not in anonymous markets, but via bilateral contracts (Kranton and Minehart,
2001). In addition to public listings, individuals gather information about job op-
portunities from friends and acquaintances (Granovetter, 1973). We similarly poll
friends for information about new products, books, movies and so on (e.g., Jackson
and Rogers, 2007; Banerjee et al., 2013; Kim et al., 2015). Banks generally meet
reserve requirements through peer-to-peer interbank lending. The structure of this
interbank lending network has profound implications for the vulnerability of the fi-
nancial system to large negative shocks (Bech and Atalay, 2010; Gofman, 2017).
Additional examples abound (cf., Jackson et al., 2017).

Although important exceptions exists, some highlighted below, economists histor-
ically avoided the study networks (see Fig. 1)." This is now changing, very quickly,
and for several reasons. First, starting in the 1990s economic theorists applied the
tools of game theory to formally study network formation (e.g., Jackson and Wolin-
sky, 1996). In the resulting models agents add, maintain, and subtract links in order to
maximize utility, with the realized network satisfying a pairwise stability equilibrium
condition.” Second, in parallel to this theoretical work, a lively empirical and method-
ological literature on peer group and neighborhood effects also arose (e.g., Manski,
1993; Brock and Durlauf, 2001; Graham, 2008; Angrist, 2014). Finally, largely driven
by questions in empirical industrial organization, econometricians made substantial
progress on the econometric analysis of games (cf., Bajari et al., 2013; de Paula,
2013). Each of these literatures serve as foundations for material introduced below.

Outside of economics, two key initiators have been (i) the increasing availability
of datasets with natural graph theoretic structure (see below for examples) and (ii) in-
novations in applied probability and theoretical statistics pertaining to random graph
models (e.g., Diaconis and Janson, 2008). These innovations provide a foundation
upon which recent work in statistics and machine learning on networks is largely
based.

A consequence of these developments is the emergence of a small methodological
literature on the econometrics of networks. Empirical applications with substantial

' n contrast our colleagues in sociology studied networks from the outset of their discipline in its modern
form. The monograph by Wasserman and Faust (1994) provides a somewhat dated introduction to this
literature. See also Granovetter (1985).

2 Other equilibrium concepts have been explored as well (cf., Bloch and Jackson, 2006).
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CHART 1
The System of Multilateral Trade, as Reflected by the Orientation
of Balances of Merchandise in 1928.

REGIONS OF RECENT
SETTLEMENT IN THE @ GERMANY

TEMPERATE BELTS

UNITEDZ EUROPE EXCEPT
GERMANY AND
STATES UNITED KINGDOM

48

< UNITED
TROPICS [sofaro] %mnenom

Note. Balances in millions of dollars, calculated from adjusted frontier values of trade
(imports valued c.if., exports f.o.b.). Both import and export balances are shown; the
smaller of the two ﬁgures in each square represents the export balance of the group from
which the arrows emerge, and the larger figure the 1mport balance of the group to which
the arrows pomt The difference between the amounts in question is due largely to the
inclusion in imports of transport costs between the frontiers of the exporting and import-
ing countries. The figure for the import balance of the “Regions of Recent Settlement in
thethTercnhlzext'ate Belts” from the United States should be 690 instead of 670 as indicated
in the char

FIGURE 1 World Trade Network in 1928.

Notes: This figured appeared in Folke Hilgerdt's 1943 American Economic Review article
“The case for multilateral trade”. The figure shows aggregate trade balances between
selected large countries and different regions of the world. The paper includes a narrative
discussion of how the patterns of trade depicted in weighted digraph drawn in the figure
developed historically.

Source: Reproduced from Hilgerdt (1943, Chart 1).

network content, spurred largely by access to new datasets, arose more quickly (e.g.,
Fafchamps and Minten, 2002; De Weerdt, 2004; Conley and Udry, 2010; Atalay et
al., 2011; Acemoglu et al., 2012; Banerjee et al., 2013; Barrot and Sauvagnat, 2016).
Furthermore, these applications now span the major fields of our discipline. Never-
theless many open questions in the econometrics of networks remain. In this chapter
I attempt to provide an account of recent progress as well as make suggestions for
future research. My audience is both econometricians and empirical researchers.

I divide my discussion into five parts. The discussion draws from recent contri-
butions to the analysis of networks made in probability, econometrics, and statistics
(including machine learning); approximately in that order. After an initial outline of
recent empirical research with a network dimension in economics, Section 3 intro-
duces some basic probability tools that will prove useful for what follows. Several
of these tools are of quite recent origin. Next, in Sections 4 to 6 I turn to the anal-
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ysis of dyadic regression models. Such models go back, at least, to the pioneering
work of Tinbergen (1962, Appendix VI) on gravity trade models. Although dyadic
regression is a core empirical method in international trade, as well as in certain ar-
eas of political science and development economics, a coherent inferential foundation
for empirical practice is only now emerging. My discussion, in addition to covering
methods of inference, discusses how to incorporate unobserved heterogeneity into
dyadic regression models (Section 6). Here I appropriate and extend insights from
panel data (Chamberlain, 1980, 1984, 1985; Hahn and Newey, 2004; Arellano and
Hahn, 2007). This section also sketches out how to answer causal questions in dyadic
settings.

Section 7 turns to the large network properties of several common network statis-
tics. I focus on so-called network moments, or the frequencies with which certain low
order subgraph configurations (e.g., triangles /) occur within a network. Subgraph
counts, in the form of the triad census, were introduced by Holland and Leinhardt
(1970) almost a half-century ago. Recent developments in probability and statistics
have substantially improved our understanding of these counts (e.g., Diaconis and
Janson, 2008; Bickel et al., 2011).

Subgraph counts may be of direct interest, but also serve as the building blocks of
several popular network statistics, such as transitivity or moments of the degree distri-
bution. Jackson et al. (2017) survey the mapping between different network statistics
and economic phenomena and questions. My interest in network moments also stems
from their value as inputs into structural model estimation in a manner akin to the
way sample moments are paired with model moments in the simulated method of
moments (e.g., Gourieroux et al., 1993). This idea is developed in Section 8.

The discussion of dyadic regression in Sections 4 to 6 rules out interdependencies
in link formation. In dyadic models the utility two agents generate by forming a link
is invariant to the presence or absence of links elsewhere in the network. Beginning
with the seminal work of Jackson and Wolinsky (1996), the relaxation of this as-
sumption is a central preoccupation of both theoretical and econometric researchers.
When link formation decisions are interdependent, inefficient network structures may
occur in equilibrium, making policy analysis interesting. Empirical network forma-
tion models allowing for interdependencies are also challenging to study. In a typical
model many equilibrium network configurations can arise for any given parameter
value; such models are incomplete (e.g., Tamer, 2003). In principle, standard tools
developed in the context of economic games between a small number of agents ap-
ply. Practically speaking such methods are computationally infeasible in the many
agent context of networks. Recent research proposes a variety of ways of getting
around this conundrum.

Economists’ interest in networks stems from the belief that their structure is con-
sequential. For example, Loury (2002) argues that differences in social networks
across Blacks and Whites drives, in part, racial inequality (cf., Graham, 2018b).
Acemoglu et al. (2012) argue that the Leontief input-output structure of the econ-
omy shapes technology shock propagation. Alatas et al. (2016) show that network
structure influences the flow and aggregation of information within rural villages.
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Theorists also study the interplay between network structure and agent behavior on
that structure (Jackson and Yariv, 2011; Jackson and Zenou, 2015). Methodologi-
cal research relating network structure to economic outcomes builds-upon the line
of peer effects research initiated by Manski (1993). The paper by Bramoullé et al.
(2009) is a nice, and influential, example of recent work along such lines.

This survey, however, does not review methods for the empirical analysis of be-
havior on networks. Instead I focus on modeling their formation. My motivation for
this emphasis is two-fold. First, Blume et al. (2011) already survey work at the in-
tersection of peer group effect identification and networks (cf., Blume et al., 2015;
de Paula, 2017). Second, the current state of research in this area suggests that a bet-
ter understanding of how networks form is a prerequisite for more credible research
on their consequences.

Current research on the effects of network structure on outcomes largely treats
it as exogenously given (although this is not always made explicit). This decision is
one reason why research on peer effects and networks remains controversial a quarter
century after Manski’s foundational paper.” The focus maintained here, on formation,
therefore seems to be a natural one. Ultimately, of course, the goal is to study the for-
mation of networks and their consequences jointly, but such an integrated treatment
remains largely aspirational at this stage. Although, Goldsmith-Pinkham and Imbens
(2013) provide one recent “proof of possibilities” example of such an integrated ap-
proach. Qu and Lee (2015), Auerbach (2016), Badev (2017), and Johnsson and Moon
(2017) represent other steps in this direction.

2 Examples, questions and notation

The analysis of datasets with natural graph theoretic structure has a long history in
the other social sciences (e.g., Moreno, 1934), and more recently emerged as an
area of focus within the statistics and machine learning community (e.g., Golden-
berg et al., 2009; Kolaczyk, 2009). Although we were late adopters, interest in these
types of datasets now also extends across virtually all fields of economics. Neverthe-
less, as already noted, appropriate methods for the analysis of network data are not
widely available. Ad hoc and/or heuristically motivated approaches to estimation and
inference abound in empirical work. Networks are characterized by complex depen-
dencies across agents, as well as other difficult modeling, estimation and inferential
challenges. These challenges are just starting be understood and solved. Before dis-
cussing methods for the analysis of network data, I briefly introduce some recent
examples of empirical network research in economics. These examples also serve to
introduce some basic notation.

3 For example, Jackson et al. (2017, p. 81) argue that endogenous network formation, the tendency for the
unobserved drivers of link formation and the behavior of interest to the econometrician to covary, poses a
key challenge to “accurately estimating interactive effects in networked settings”.
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Bananas: Major Exporters Bananas: Major Importers

FIGURE 2 World Trade in Bananas, 2015.

Notes: International trade of bananas in 2015 (HS6 code 080390). Each node in the figure
represents a country (nodes are positioned at capital cities) and an edge between two
nodes indicates the presence of at least 50,000 tons of directed banana flows (the head of
each directed edge corresponds to the importing nation). In the left-hand panel node size is
proportional to the total exports of bananas by the relevant nation, while in the right it is
proportional to its total imports.

Source: BACI-CEPII International Trade Database (cf., Gaulier and Zignago, 2010; De
Benedictis et al., 2014) and author’s calculations.

2.1 Empirical analysis of trade flows

Fig. 2 visually depicts international trade in bananas, a widely-eaten tropical fruit,
in 2015. Each dot or node in the figure corresponds to a country. If, for example,
Honduras, exports at least 50,000 tons of bananas to the United States, then there
exists a directed edge __from Honduras to the United States.” The exporting country
(left node) is called the fail of the edge, while the importing country (right node) is its
head. The set of all such exporter-importer relationships forms G (V, £), a directed
network or digraph defined on N = |V| vertices or agents (here countries). The set
YV ={1,..., N} includes all agents (countries) in the network and £ CV x V the
set of all directed links (exporter-importer relationships of 50,000 tons or greater)
among them.” Let N be the order of the digraph and |£] its size. In what follows
nodes may be equivalently referred to as vertices, agents, individuals, countries and
so on depending on the context. Likewise edges may be called links, friendships, ties,
arcs, relationships and so on.

There are N = 220 countries in the banana network and hence up to 2(230)
48, 180 directed trading relationships among them. How might an econometrician
model the presence or absence of a trading relationship from country i to j? Over
fifty years ago Tinbergen (1962, Appendix VI) introduced gravity models, suitable
for data of the type shown in Fig. 2. In a gravity model trade between two countries, a
dyad in network parlance, is modeled as a function of exporter and importer attributes
(e.g., their gross domestic products), as well as dyad-specific covariates (e.g., physi-
cal distance between them). Generalizations of Tinbergen’s approach are workhorses

4 In constructing this network, I binarized the underlying trade flow data to determine edge placement.
5 Here U x V denotes the Cartesian product of the set ¢/ and V (i.e.,Ud x V ={(u,v) :ueld, veV}).
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of modern empirical trade research (e.g., Santos Silva and Tenreyro, 2006; Helpman
et al., 2008; Anderson, 2011).

Their ubiquity notwithstanding, serious open questions remain about how to es-
timate, and conduct inference on, the parameters of gravity trade models. Questions
of particular interest here include how to account for the dependence across dyads
sharing a country in common, how to incorporate country-specific (correlated) unob-
served heterogeneity, and how to formalize causal policy effects in dyadic settings. As
an example of the latter challenge, consider the effects of participation in multi-lateral
trading agreements, such as the General Agreement on Tariffs and Trade (GATT) or
its successor, the World Trade Organization (WTO), on trade flows. Does trade in-
crease across participating countries (Rose, 2004; Helpman et al., 2008)? While a
mature literature on program evaluation suitable for single agent settings now ex-
ists (cf., Heckman and Vytlacil, 2007; Imbens and Wooldridge, 2009), a networked
counterpart has yet to emerge.

2.2 Corporate governance

Next consider the affiliation network of (corporate board) directors and firms. This bi-
partite network B (U, V, £) consists of two sets of agents, the set of possible directors,
U, and the set of firms, V. Edges, £, match directors to firms (i.e., corporate boards),
and hence may only run between V' and /. A longstanding interest among corpo-
rate governance researchers centers on the implications of so-called board interlocks.
When a single director sits on multiple corporate boards, then these corporations
have interlocking directorates (Dooley, 1969). Interlocking directorships may facili-
tate collusion and other anti-competitive activities as well as, perhaps more positively,
the diffusion of innovations in corporate governance (Davis, 1991, 1996).

Fig. 3 plots the one-mode projection of the directors-to-firms bipartite network for
S&P 1500 firms in 2016. This projection generates an undirected network G (V, £)
on the set of all firms, with an edge between any two firms sharing at least one director
in common (i.e., with interlocking corporate boards). Large firms in United States are
inter-connected via overlapping corporate board membership. On average firms share
at least one board member in common with four other firms and over 80 percent of
S&P 1500 firms form a giant connected component of board interlocks. The board
interlock network is also highly transitive: two firms are much more likely to share a
director in common, if they also share one in common with a third firm.

Chu and Davis (2016) and Gualdani (2020) provide recent analyses of board in-
terlocks as well as references to earlier work.

2.3 Production networks

Atalay et al. (2011) study the production network of the United States economy. The
sale and purchase of intermediate inputs between firms joins virtually all publicly
traded corporations in the United States into one giant buyer-supplier network.
Serpa and Krishnan (2017) present evidence of productivity spillovers across
firms linked together via supply chain relationships (cf., Acemoglu et al., 2016a).
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FIGURE 3 United States Corporate Board Interlocks, 2016.

Notes: The figure plots the largest connected component of the corporate board interlock
network in 2016 among S&P 1500 firms. The top 10 Fortune 500 firms in 2016 are the
larger ‘Rose Garden’ colored nodes. A total of 1216 firms belong to the largest connected
component. See Newman (2010, p. 124 - 127) for details on how to construct one-mode
projections of bipartite graphs.

Source: Wharton Research Data Services (WRDS) - Institutional Shareholder Services (ISS)
Directors dataset and author’s calculations (cf., Chu and Davis, 2016).

Acemoglu et al. (2012) study the effect of the Leontief input-output structure of the
US economy on shock propagation. Their analysis suggests that idiosyncratic tech-
nology shocks to critical input suppliers may have macro-level effects.

Bernard et al. (2018), using detailed supply-chain data from Japan, show how
lowering supplier search costs allows firms to source inputs more efficiently, in turn
lowering marginal production costs. The rich supply-chain data underlying the anal-
ysis of Bernard et al. (2018) is emblematic of the increasing availability of detailed
supply chain network data from different countries (e.g., Dhyne et al., 2015). These
datasets have the potential to dramatically improve our understanding of, for exam-
ple the sources of heterogeneity in productivity across firms (e.g., Atalay et al., 2014)
and the upstream and downstream implications of (horizontal) mergers (e.g., Fee
and Thomas, 2004; Bhattacharya and Nain, 2011; Ahern and Harford, 2014), among
many other areas of industrial organization and regulation policy.
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2.4 Research collaboration

Jaffe (1986), in a classic study, presented evidence of research and development
(R&D) spillovers across technologically adjacent firms (Bloom et al., 2013; Ace-
moglu et al., 2016b). Such spillovers provide a motivation for firms to undertake
collaborative R&D, a tendency which has increased over time (Hagedoorn, 2002;
Tomasello et al., 2017). Konig et al. (2019) model the formation of R&D partnerships
across firms theoretically and empirically, exploring the implications of network
structure for optimal R&D subsidy policies. The structure of spillovers across firms,
as well as the mechanisms whereby they form R&D partnerships, determines optimal
policies.

Ductor et al. (2014) study collaboration and research output among and across
economists. Newman (2001) explores collaboration networks in the various sci-
ences.

2.5 Risk-sharing across households

A classic question in development economics is whether households efficiently
share risk through informal agreements (Townsend, 1994; Udry, 1994). Recently
economists have directly collected information on risk-sharing relationships across
households. For example, De Weerdt (2004) collected data on risk-sharing links
across households in a village in Tanzania and empirically modeled the determinants
of these links (cf., Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007). Am-
brus et al. (2014) investigate how the precise structure of links across households
determines the amount of risk that can be insured, as well as the form of second best,
more local, network structures.

Network structure now informs many other areas of development economics, in-
cluding research on technology adoption and program take-up in rural settings (e.g.,
Banerjee et al., 2013; Kim et al., 2015), the productivity of small traders and firms
(e.g., Fafchamps and Minten, 2002), and post-migration employment outcomes (Bea-
man, 2011; Munski, 2003), among other examples.

2.6 Insurer-provider and referral networks for healthcare

Many features of the health care market naturally map into graphs. For example,
physicians may have admitting privileges across multiple hospitals, insurers typically
offer preferential terms to selected networks of providers, and doctors vary in the
intensity with which they refer patients to one another.°

The welfare and economic implications of these networks are likely immense,
given the magnitude of the health care sector in the United States economy. Ho (2009)
represents one attempt to grapple with the network structure of healthcare markets.

6 Barnett et al. (2011) and An et al. (2018) use patient referral patterns to map out relationships among
physicians.
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2.7 Employment search

Toannides and Loury (2004) survey the substantial literature on the interplay between
social networks and job acquisition, a topic that has fascinated both sociologists and
economists at least since Granovetter (1973). The growing availability of longitudinal
register data from various countries provides an opportunity to study the interface
between networks and inequality in the labor market more carefully.

For example, Saygin et al. (2014) use the Austrian Social Security Database to
construct a co-worker network for middle aged workers in Austria. A co-worker
is anyone who an individual has ever worked with previously. They find that the
structure of these co-worker networks predict the ease with which workers find em-
ployment after establishment closures (i.e., mass layoffs). This paper provides a nice
example of how new data may facilitate the re-visiting of a classic networks question
(cf., Hensvik and Skans, 2016).

2.8 Questions

The examples outlined above represent only a small sample of recent appearances
of network data in empirical economic research.” What do we hope to learn from
this growing body of research? As noted in the introduction, empirical research on
networks can usefully be divided between that which studies the consequences of
networks and that which studies their formation. The premise of this chapter is that
network linkages across agents are consequential. That is, I take as given that net-
works are important venues for shock propagation, information diffusion, learning
and various types of peer interactions. Maintaining this premise justifies my focus on
the econometric modeling of network formation.

An analogy with the development of single agent models of discrete choice is
useful. McFadden (1974), in a pioneering paper, initiated a research program on
identifying and estimating random utility models of discrete choice. Empirical ap-
plication, computation, semiparametric identification and estimation, the inclusion
of unobserved choice attributes, and allowing for strategic behavior, all have been
important accomplishments of this research program. These econometric models are,
in turn, routinely used in virtually all areas of economics.

The goal here is analogous. Relational data are ubiquitous in economics, but
econometric models for such data are not. The goal, therefore, is to develop models
for these data, preferably with (i) strong microeconomic foundations, (ii) that allow
for unobserved agent-level heterogeneity, and (iii) incorporate interdependencies in
preferences over links. Also required are feasible methods of estimation and inference
(and in this area interesting and challenging questions are abundant). The availability
of econometric methods for network analysis will, in turn, allow for counterfac-
tual policy and welfare analysis. How would a particular horizontal merger affect
upstream supply chain structure? What is the effect on trade flows of Eurozone mem-

7 de Paula (2017) and Jackson et al. (2017) provide additional references.
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bership? Could a school principal increase friendships across races, or raise average
achievement, by structuring classrooms under her purview differently?

Some readers may wish to skip Section 3 initially and instead start with Sections 4
to 6. They could then return to Section 3 before tackling Sections 7 and 8. Graph
theoretic concepts and notation appears throughout the chapter. While many terms
and definitions are formally defined, others are not. Missing definitions can be found
in any basic graph theory textbook.

3 Basic probability tools: random graphs, graphons, graph
limits and sampling

This section provides an informal introduction to key ideas from the applied proba-
bility literature on exchangeable random graphs. The main concepts are (i) exchange-
able random graphs and their representation, (ii) subgraph densities or network mo-
ments, (iii) limits of sequences of exchangeable random graphs, and (iv) sampling.
These ideas underlie a substantial share of recent research on the statistics of net-
works (e.g., Airoldi et al., 2008; Diaconis et al., 2008; Bickel and Chen, 2009; Bickel
et al., 2011; Bhamidi et al., 2011; Chatterjee et al., 2011; Olhede and Wolfe, 2014;
Orbanz and Roy, 2015; Gao et al., 2015).

Much of this statistics work has been motivated by research questions in compu-
tational biology and neuroscience (e.g., Picard et al., 2008). Link formation in these
settings is not driven by purposeful agents. Consequently this research may initially
appear rather distant from the concerns of econometricians. Nevertheless my view
is that recent developments in probability and statistics have much to offer econo-
metricians interested in networks (and also vice-versa, although making this second
argument is not on my agenda here).

The basic concepts introduced in this section appear frequently in later portions
of the chapter.

3.1 Notation
Let G (V, €) be a finite undirected network or graph defined on N = |V (G)| ver-
tices or agents; here V (G) = {1, ..., N} denotes the set of all agents in the network.®

Any two agents may be connected or not. The set of such links is recorded in the
edge list £ (G) ={(i, j), (k, 1), ...}, consisting of the (unordered) indices of all con-
nected agent pairs. Call N the order of the network and |€ (G)| its size. We can
represent G (V, €) by the N x N adjacency matrix D = [ Dj; ] with ij" ele-
ment

i,jeV(G)

8 If X is a set, then |X| denotes the cardinality of that set. If X is a matrix of reals, then |X| equals its
(element-wise) absolute value.
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D — 1, (G, j)e&(G)
Y71 0, otherwise

For an undirected network, with self-ties or loops ruled out, such that D;; = 0 for
i € V(G), D is a symmetric binary matrix with a diagonal of structural zeros. I focus
on undirected networks initially, but also present some results for directed networks
and bipartite networks. Specific notation for these special cases will be introduced as
needed.

In settings where it is useful to emphasize the order of G, I use the notation Gy .
This is especially useful when considering sequences of graphs. Let (i, j) € £ (G)
be an edge in G; sometimes I will abbreviate (i, j) as ij. The complete graph on p
vertices is denoted by K.

Following Jackson (2008), let G — ij denote the network obtained by deleting
edge ij from G (if present), and G + ij the network one gets after adding this link.
Let D £ ij denote the adjacency matrix associated with the network obtained by
adding/deleting edge (i, j) from G. Let Dy denote the set of all 2(5) possible adja-
cency matrices and Iy the set of all possible N-dimensional binary vectors.

Let N(i) ={j eV :ij €&} be the set of agent i’s neighbors: agents to which
she is directly linked. The degree of agent i is given by the cardinality of this set.
Equivalently agent i’s degree may be computed by summing the elements of the i
row of the adjacency matrix. Let ¢y be an N x 1 vector of ones. The vector D = Duy
is called the degree sequence of the network (typically we re-arrange the order of
agents such that the elements of this vector are in ascending order).

I informally call a network dense if its size, or number of edges, is “close to” N 2

and sparse if its size is “close to” N. More precisely a sequence of graphs is sparse
in the limit if the number of edges in it grows linearly with N, dense if this growth is
quadratic.
There are n dg (1;/ ) =INWN-1 pairs of agents, or dyads, in a network consist-
ing of N agents. Triples, quadruples and quintuples of agents are call triads, tetrads
and pentads respectively. A tuple of 17 agents, which arises rather rarely in every-
day empirical work, is evidently called a septendecuple. Not having formally studied
Latin, I offer the reader no guidance on pronunciation.

Let ), _; be shorthand for >t Z?;i 41 with 37, similarly defined. The
density of a network,

%)

def . def 2
Py (—) = pN szU’

i<j

equals the proportion of connected dyads. Let D;, be the i’" element of the degree
sequence. Average degree,

N

~ def . def 1

IvE W =Dpn'= 5D Dig
i=1
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equals the average number of links per agent in the network.

In what follows random variables are (generally) denoted by capital Roman let-
ters, specific realizations by lower case Roman letters and their support by blackboard
bold Roman letters. That is ¥, y and Y respectively denote a generic random draw
of, a specific value of, and the support of, Y. The abbreviations i.i.d., CLT, LLN and
GGP stand for, respectively, “independent and identically distributed”, “central limit
theorem”, “law of large numbers” and “graph generating process”. For the vector
b, ||b]|, denotes the Euclidean norm; for the matrix B, ||B|| r denotes the Frobenius
norm. I use Iy to denote the N x N identity matrix. N denotes the set of natural
numbers and [Yi f]i,j <y an infinite two-dimensional array with i th element Y; e

I use the big-Omega notation Xy = 2 (Yy) to denote that Xy = O (Yy) and

Yy = O (Xy). The notation 2 denotes equality in distribution, dg a mathemati-
cal definition. Let 6 be some parameter value in the space ®. Let Sy (6) be some
statistic indexed by this parameter with population value 6. I let Sy = Sy (6p) de-
note the statistic evaluated at 6 = 6. To economize on space I sometimes abbreviate
Pr(Y=y|X=x)as Pr(Y =y|x) or Pr(y|x) and similarly for E[Y]|x], V(Y|x)
etc.

3.2 Exchangeable random graphs

Initially assume the unavailability of agent-specific covariates, making it natural to
assume that agents are exchangeable (models with covariates, and a correspond-
ingly weaker notion of exchangeability, feature in Sections 4, 5, 6 and 8). Let
w:{l,...,N}— {l,..., N} be a permutation of the node labels of G (V, ) and
IT the set of all such permutations. The random graph G is jointly exchangeable it

[Dij] 2 [Drire(] (1)

for every permutation 7 € II.

In settings where node labels have no meaning, exchangeability is an implication
of a priori researcher belief (and hence a natural modeling assumption). Consider a
researcher analyzing the adjacency matrix associated with a set of friendship links
among adolescents in a high school (e.g., Currarini et al., 2009), in the absence of
node-specific covariates, there is no reason to change one’s modeling approach af-
ter simultaneously applying a particular reshuffling of agents to both the rows and
columns of D (cf., Rubin, 1981). Put differently, when node labels have no meaning,
the probability attached to any isomorphism of G should be the same as that attached
to G itself.

There are many interesting statistics of D which are invariant to simultaneous row
and column permutations. Examples include a network’s density, diameter and trian-
gle (/) count. A family of such statistics, network moments, is introduced below.
Exchangeability suggests that a statistical model should attach different probabilities
to networks with different values of such (permutation invariant) statistics, but the
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same probability to two networks which are isomorphic (which will share common
values of any permutation invariant statistic).

An exchangeable model with strategic interaction

Most extant models of network formation satisfy condition (1). As an example, which
will help to fix some ideas, consider the model of strategic network formation with
bilateral transfers studied by Graham and Pelican (2020). Let v; : Dy — R be a
utility function for agent i, which maps networks into utility. Define the marginal
utility of edge ij for agent i as

1% (D)—I)i (D—l]) ifDij =1

MU;; (D) = . 2
@ { v (D +ij)—v; (D) if D=0 @
From Bloch and Jackson (2006), a network is pairwise stable with transfers if the

following condition holds.

Definition 1 (Pairwise stability with Transfers). The network G (V, £) is pairwise
stable with transfers if

DHVY(E,j)e&(G), MU;;(D)+MU;; (D) >0

i)V, j)¢EWG), MU;; D)+ MU;; (D) <0

If the network in hand is a pairwise stable one, then any links actually present
generate (weakly) positive utility (on net for the two agents on each side of a link).
Unobserved links, in contrast, would not generate net positive utility if present.

Graham and Pelican (2020) focus on a general family of parametric utility func-
tions which includes, among others, the specification

vi (dIA, B, V*; ) = Zdij |:Ai +Bj+w (Zdikd‘/k> - Vl}i| 3

Jj k

with V* = [vj] A = [A;] and B = [B;]. Under (3), assuming o > 0, dyad {i, j}
will generate more utility when forming a link if they already share many links or
“friends” in common (i.e., if ), dixd ik is large). Here A; and B; are agent-specific
“extroversion” and “popularity” parameters, the effect of which is to generate degree
heterogeneity (cf., Graham, 2017). The term Vl’; is an idiosyncratic dyad-specific
utility shifter. Graham and Pelican (2020) leave the joint distribution of A and B
unrestricted, but here I will assume that {(A;, Bi)},N: | is an i.i.d. sequence which is

independent of {(Vl* V.*.) } , also assumed i.i.d.
7TV )i e, . NYi<j

When the utility function is of the form given in (3) the marginal utility agent i
gets from a link with j is

MU; (d|A, B,V 09) =A; + Bj + » <Zdikdjk) -V
k
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Pairwise stability then implies, conditional on the realizations of A, B, V*, and the
value of externality parameter, yy, that the observed network must satisfy, for i =
,...,.N—land j=i+1,...,N

Dij=1 <Ui +U;+2n (Z Diijk> > Vij) “4)

k

withU; = A; +B; and V;; = Vl}* + Vj?“i. Eq. (4) defines a system of (];/) =Inw-1
nonlinear simultaneous equations. Any solution to this system — and there will typi-
cally be multiple ones — constitutes a pairwise stable (with transfers) network.”

As written, model (4) is incomplete (cf., de Paula, 2013). Even if we assume that
the observed network is a pairwise stable one, we have not specified a mechanism
for selecting, when there are multiple ones, a specific equilibrium configuration. To
complete the model, following the more careful development in Pelican and Graham
(2019), let Mg (V; U, y) equal the probability that configuration D = d is selected.
If d is not an equilibrium — given U, V and y — then Ng (V; U, y) = 0. If d is the
unique equilibrium then Ng (V; U, y) = 1. If d is one of several equilibria, then 0 <
Na(V;U,p) <letc.

For Dy the net of all N x N undirected adjacency matrices, we have that
ZdeDN Na (V; U, y) = 1. The conditional likelihood of observing network wiring
D = d is therefore

Pr(D=d|U;y)= Na(v; U, p) fyv (v)dv.

veR”

The () equilibrium conditions (4) indicate that if d = [d;;] is an equilibrium, then

de
soisdy; Ef [d,, ) ( j)]. Hence as long as the equilibrium selection mechanism is also
invariant to index permutations, as is natural to require, condition (1) holds.
Under the null of no strategic interaction, y = 0, the likelihood simplifies to

Pr(D=d|U;0) = Na (v; U,0) fy (v)dv 5
veR"

with

N-1 N
Na(v:U,0) = H 1_[ 1(Ui+U; = Uij)dij

i=1 j=i+l

x 1 (U,' + Uj < U,’j)l_dij .

9 Note that in this example existence of a pure strategy equilibrium is easy to show using Tarski’s (1955)
fixed point theorem.
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(2,3) edge (2,3) edge does
forms not form
Vi, =0 Vi3=0 Via =2y Vi3 =2y
0 <Vy=s22y 0 <Vy=s2y

FIGURE 4 Dependent link formation.

Notes: Both panels depict the unique pairwise stable equilibrium associated with the shown
triple of dyad-level utility shifters V2, Vi3 and V»3 and agent-level heterogeneity parameters
Uy, U, and Us identically equal to zero. In both panels the realized value of Va3 is the
same, but whether Dy3 =1 or 0 varies with the realized values of Vi, and Vi3. If Vi5 and
Vi3 are sufficiently low, then D3 = 1; if they are sufficiently high, then D3 = 0. Links are
not conditionally independent given {U; };— 2 3.

Since {(Vij)}i,je{l,‘.., i< 18 1.d., if we further assume that fy,, (v)=e v+ e”]2,
the logistic density, explicitly evaluating the integral in (5) yields

dij 1—d;

exp (Ui + Uj) ! 1 !

Pr(D=4d|U;0 ;
e U= H H |:1+exp U,+U]):| 1+exp (Ui + Uj)

i=1 j=i+1
(0)

which is the likelihood associated with the so-called 8-model of Frank (1997) and
Chatterjee et al. (2011).

A feature of the S-model is that links form independently conditional on the la-
tent agent-specific effects {U; }1N= 1- Eq. (6) consists of a product of (g’) conditionally
independent likelihood contributions.

Evidently, this conditional independence structure is not typically a feature of the
model when y > 0, such that strategic interaction is present. To see why by means
of a simple example, consider a network consisting of just three homogenous agents
(i.e., Uy = Uy = U3 =0). Initially assume that both V7, and Vi3 are less than zero,
but that 0 < Va3 < 2y9. This corresponds to edges (1,2) and (1, 3) generating so
much intrinsic utility that they will form irrespective of what other edges may or may
not be present in the network. In contrast, the intrinsic utility attached to edge (2, 3)
falls in an intermediate range: the edge forms if edges (1,2) and (1, 3) are present —
such that agents 2 and 3 share agent 1 as a friend in common — and does not form if
they are absent. This configuration of utility shocks is depicted in the left-hand panel
of Fig. 4. The unique equilibrium outcome in this case is a triangle (/\) network.

If, instead, V1> and Vi3 are both greater than 2y, such that the (1,2) and (1, 3)
edges never form because of their low intrinsic utility (again irrespective of what
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other edges may or may not be present in the network), then the (2, 3) edge will not
form either. This scenario is depicted in the right-hand panel of Fig. 4. The unique
equilibrium outcome in this case is an empty (. .) network.

This simple example shows that D3 need not vary independently of D1, and D13
conditional on (Uj, Uz, U3) in the presence of strategic interaction (y > 0). Such
conditional independence is a feature of the B-model (y = 0). While the model is
exchangeable both when y > 0 and when y = 0, the conditional independence of
edges only obtains under the no strategic interaction null.

3.3 Conditionally independent dyad (CID) models and the graphon

Having established that a network probability model should satisfy the joint ex-
changeability condition (1), it is important to articulate classes of models that do
s0. One such family of models, suggested by the last example, are conditionally in-
dependent dyad (CID) models (Chandrasekhar, 2015; Shalizi, 2016). In these models
each agent is characterized by an unobserved latent attribute, U;. The N agents in
the network in hand are viewed as independent random draws from some population,
such that the {Ui}lN: | are independently and identically distributed. Conditional on
the agent-specific latent variables U = (Uy, ..., Uy) edges form independently with

D,‘j| Ui, Uj ~ Bernoulli (/’l (U,', Uj)) ,

for every dyad {i, j} with i < j. Here h (u,v) = h (v,u) for all (u,v) e U x U is
a symmetric edge probability function. In anticipation of results to come, call this
function a graphon: short for graph function.

Conditional on the latent agent-specific effects the likelihood of the network is

Pr(D=d|U=w =[] (u. w)) " (1= R ()]

i<j
Unconditional on U, the likelihood equals

N

Pr(D:d)=/~-~/ [Tk Geioug)® [0 =k (i )] T o oy dus, ()

i<j i=1

where fi (u) is the density of U. Importantly (7) allows for dependence across dyads
which share agents in common. Independence holds only conditional on the latent
agent attributes (Graham, 2017). Similar independence restrictions play a prominent
role in the econometrics of panel data (Chamberlain, 1984; Arellano and Honoré,
2001).

It is an easy exercise to show that (7) is compatible with the finite joint exchange-
ability restriction (1).
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The B-model, introduced above, belongs to the family of CID models with a
graphon of

exp (u +v)
1 +exp(u+v)

Random threshold graphs (e.g., Diaconis et al., 2008) are also members of this family
with graphon

h(u,v) =

h(u,v)=1(Fy (u) + Fy (v) = a),

and Fy (u) the CDF of U.

It is important to realize that CID models constitute only a subset of all jointly
exchangeable random graph models when N — the number of agents in the network —
is finite. As shown by means of the example introduced above, strategic interaction in
link formation can induce dependence across elements of the adjacency matrix that
evidently cannot be eliminated by conditioning (see Fig. 4 above). Although not all
exchangeable models are CID ones, this family of models plays an outsized role in
extant large sample theory for networks.

3.4 Aldous-Hoover representation theorem and the graphon

Joint exchangeability imposes more structure on the network probability distribution
when there are an infinite number of agents. Specifically, if we strengthen (1) to
hold for any permutation of a finite number of the indices of the infinite sequence
N={1,2,3,...}, we have a generalization of de Finetti (1931) type exchangeability
of an infinite sequence, appropriate for infinite random graphs. In independent work
Aldous (1981) and Hoover (1979) showed the following representation result for
infinite random adjacency matrices (cf., Kallenberg, 2005).

Theorem 1 (Aldous-Hoover). A random adjacency matrix [D,- j] is jointly ex-

i,jeN
changeable if and only if there is a measurable function g : [0, 11* — {0, 1} such
that
D
[Dij] =[g (e Ui, U}, Vij)]
for a, {Ui}ien, and {Vij }l. ieN.i<j independently and identically distributed U [0, 1]
random variables with V;; = Vii.

Here « is a mixing parameter, analogous to the one appearing in de Finetti’s
(1931) classic representation theorem for exchangeable binary sequences.' Theo-
rem | implies that if network agents are exchangeable for all NV, then we can proceed
‘as if” edges formed according to a CID model or a mixture of such models.

10° To make the connection with de Finetti (1931) transparent Aldous (1981, Lemma 1.5) also shows that
an infinite sequence {I/i}l.oo | is exchangeable if and only if there exists a measurable function f such that

2 @)
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Exploiting the fact that the elements of D are binary, we can simplify Theorem 1
as follows. Averaging over V;; yields

def [}
h(ouiuj) = | g(ouiuj,v)dv
0
from which we get the more convenient representation, for i < j,

[D4] 2 [1(Vij <h (e Ui U)))]. @®

This is, of course, just a conditional edge independence model (or, more precisely,
a mixture of such models). In what follows I focus on inference which conditions on
the empirical distribution of the data; consequently « can often safely be ignored.
When this is the case I suppress the o argument in the graphon, writing h (U,', U j).
See Bickel and Chen (2009) and Menzel (2017) for additional discussion.

Theorem | motivates an approach to nonparametric modeling of large networks
that proceeds ‘as if” links form independently conditional on the agent-specific la-
tent variables U = (Uy, ..., Uy)’. This is convenient because CID models induce a
very particular dependence structure across the rows and columns of the network
adjacency matrix.

Consider, without loss of generality, agents 1, 2 and 3. In a CID model D, and
D13 may covary; the dyads {1, 2} and {1, 3} share the agent 1 in common and hence
both links form, in part, based on the value of U;. However D> and D13 vary inde-
pendently conditional on Uy, U; and Uz (hence the conditionally independent dyad
nomenclature). Links involving pairs of dyads which share no agents in common, for
example D1, and D34, form independently.

The structured pattern of dependence, independence and conditional indepen-
dence associated with CID models facilitates the development of LLNs and CLTs
that can be applied to statistics of the adjacency matrix. A group of statistics for
which some large network distribution theory is available are network moments.

3.5 Network moments

Almost fifty years ago Holland and Leinhardt (1970) suggested that a network’s
architecture could be usefully summarized by its average local structure. Agent ex-
changeability, in conjunction with Theorem 1, also motivates an approach to network
modeling based on the frequency of low order subgraph configurations (i.e., the num-
ber of edges, two stars, triangles, squares, k-stars etc).

Consider, for example, the set of all (1;’ ) triads — unordered triples of agents —in a
network; what fraction of these triads take two-star /\ or triangle A configurations?
These frequencies, called nerwork moments by Bickel et al. (2011), feature promi-
nently in research by sociologists (e.g., Granovetter, 1973; Coleman, 1988; Gould
and Fernandez, 1989) and computational biologists (e.g., Milo et al., 2002; Przulj
et al., 2004); albeit in the context of two largely independent and desynchronized
literatures.
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In economics, network moments play an increasingly important role in empirical
research as well. Examples include Jackson et al. (2012), who explore, theoretically
and empirically, how different triad configurations can support infrequent favor ex-
change between agents; Atalay et al. (2011), who calibrate a model of buyer-seller
networks to the US economy by modeling its degree distribution''; and de Paula
et al. (2018), who present conditions under which (a variant of) network moments
(partially) identify preferences in a structural model of strategic network formation.

Network moments, in addition to being important summary statistics for graphs,
play an important role in (i) the distribution theory for dyadic regression discussed in
Sections 4 and 5, (ii) understanding the degree distribution and (iii) structural model
estimation. The material which follows is dense.

Subgraphs and isomorphisms

The exact sense in which a network is summarized by its moments can be made
precise using the graphon, as introduced above, and the notion of a graph limit, which
will be introduced below (Diaconis and Janson, 2008; Lovész, 2012). First we require
a formal definition of a subgraph. There are two definitions used by empirical network
researchers.

Definition 2 (Partial Subgraph). Let V (S) € V (G) be any subset of the vertices of
Gand E(S) CTEG)NYV(S) x V(S), then S =V (S), E(S)) is a partial subgraph
of G.

A partial subgraph S of G consists of a subset of agents in G and a subset of all
edges among V (S) also appearing in G. Counts of partial subgraphs are often referred
to as network motif counts (e.g., Milo et al., 2002), although this terminology is not
used consistently. The two star motif § = /\ is a partial subgraph of G = /. Note
that in this example S does not include the edge between agents, numbered clockwise
from the top, 2 and 3.

Definition 3 (Induced Subgraph). Let V (S) € V (G) be any subset of the vertices of
Gand E(S)=E(G)NV(S)xV(S),then S = (V(S), £(S)) is an induced subgraph
of G.

An induced subgraph S includes all edges in G connecting any two agents in
V (S). Although S = A is a partial subgraph of G = A, it is not an induced one.
Counts of induced subgraphs are often referred to as graphlet counts (e.g., Przulj et
al., 2004), although again not consistently so.

Consider two graphs, R and S, of the same order. Let ¢ : V (R) — V (S) be a bi-
jection from the nodes of R to those of S. The bijection ¢ : V (R) — V (S) maintains
adjacency if for every dyad i, j € V (R) if (i, j) € £ (R), then (¢ (i), ¢ (j)) € £(S);
it maintains non-adjacency if for every dyad i, j € V(R) if (i, j) ¢ £ (R), then
(@), 9 (j)) ¢ E(S). If the bijection maintains both adjacency and non-adjacency
we say it maintains structure.

11 Below I show that network moments and moments of the degree distribution are closely connected.
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Definition 4 (Graph Isomorphism). The graphs R and S are isomorphic if there exists
a structure-maintaining bijection ¢ : V (R) — V (S).

In what follows I use the notation R = § to denote that “R is isomorphic to §.”

Two special families of motifs/graphlets will play a prominent role in the analysis
of network summary statistics presented in Section 7 below. First, a p-cycle is p'"
order graphlet with nodes labeled (or relabeled) such that its edges form a cycle:

EW®) ={G1.i2), (12,i3) ..., (ip.11)}.

A p-cycle is a connected graphlet with p edges on p nodes. As one transverses a
p-cycle graphlet no vertex is crossed more than once except for the first/last one.
Important examples of p-cycles are triangles (S = A ) and 4-cycles (S = ).

Second, a tree is a connected graph with no cycles. The number of edges on a p'*
order tree is p — 1; a feature which will prove highly convenient. Important examples
of trees are p-star graphlets, such as two-stars (S = /\) and three-stars (S = ).
Trees will feature in the analysis of the degree distribution given below. Trees are
also called connected acyclic graphs.

Induced subgraph density

Using Definitions 3 and 4 we can formally introduce the induced subgraph density.
This will be our first measure of the frequency with which a specific low-order local
configuration of links appears within a network. Let S be a p'"-order graphlet of
interest (e.g., S =\ or S = A), is0 (S) the group of isomorphisms of S, and |iso ()|
its cardinality. It is helpful to observe that |iso (S)| equals the number of (partial)
subgraphs of K, that are isomorphic to S. For example, |iso (/\)| = 3 since there are
three ways to draw a two-star configuration on three vertices. Gy is the real world
network under study.

Leti, € {1,2,..., N} be aset of p integers. If we require that iy <iy <--- <ip,
then there are (/Z ) such integer sets; denote this set of integer sets by C,, y. If all that

is required is that iy # i; for k # [, then there are ﬁ such integer sets; denote
this set of integer sets by A, .

Let the vertex set of S be {1,..., p}. Let G [ip] denote the induced subgraph
of G associated with vertex set i,. Since we wish to compare S and G [ip] it

will be convenient to relabel the latter. Let G [ip] be a relabeling of G [i p] such
that iy = 1, i =2,....i, = p so that ki € & (G[ip]) if ixis € € (Gip]). Let
i, ~ Uniform(A,, v); the frequency with which Gy [i, ] equals S is then

d -
Py ()Y pr (S — Gy [i,,]) . i ~ Uniform( A, y). )
Call (9) the induced subgraph density of S in G y. Alternatively we can write

Pr(S=ZGy[ip))

Pn(S)= liso (S)]

, iy~ Uniform(C,,,N) (10)
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The induced subgraph frequency of S in G y equals the fraction of injective map-
pings ¢ : V(S) — V (Gy) that preserve both edge adjacency and non-adjacency.
Direct computation of this fraction yields the equalities

Py (S):%!p)! 3 1(S=GN [i,,]) (11)

( ipeA, N

= Y 1(s=6w i)

( )|IS°(S)|1 Cpn
Y a5, G )

In order to understand the mechanics of computing (11) it is useful to reformulate,
once again, its definition. Let D[il,‘i,,] be the p x p sub-adjacency matrix constructed
by removing all rows and columns of D except those in i, = {il, ey ip}. We can
check for whether G [ ] is an isomorphism of S by inspecting the elements of the
D[lp i)] sub-adjacency matrix.

Consider the two star triad § = /\, we can express 1 (S = Gy [ip]) in terms of
D[- i,] @

Ip-1p

1(A ZGnip]) =Diyi» Diris (1 — Digiy) + Diyir (1 = Diyiy) Disis (12)
+ (1 = Diyiy) Diyiy Disis -

We have [iso (/\)| = 3 with the three terms to the right of the equality in (12) equal
to indicators for these three possible isomorphisms (on triad/vertex set {i, i2,i3}).
In general 1(S = Gy [i,]) may be defined in terms of Dyi, i,] with the number of
components equal to the number of possible isomorphisms of S. There is only one
isomorphism of the A configuration, yielding a second example of

[
—_~
~

12

/\ GN[p]) D1112D11l3D1213‘

Recognizing that #ing (S, G ) is a functional of the adjacency matrix of G  allows
us to easily compute its expectation when edges form according to the conditional
edge independence model (8). Once again consider the two star configuration; iter-
ated expectations and conditional independence of edges given U = (U1, ..., Uy)’
yield

E’[DllllellS (1 - Di2i3)] =E []E[Dllllellz (1 - Di2i2)|U]]
[h (U Uip) b (Ui, Uis) [1 = 1 (Ui, Uss) ]]

/f/h(t u)h(,v)[1—nhu,v)]dtdudv
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(and also that the value of E [Diliz D, i, (l — Di2i3)] is invariant to permutations of
its indices). Finally we have, recalling that |iso (/)| =3,

E[1(A =Gy [i,,])]:s.///h(t,u)h(t,v)[l—h(u,v)]dtdudv,

for i, ~ Uniform(C, n). For a generic graphlet configuration we have

E[fina (S, Gn)1 = liso ()| ' E[1(S = G [ip])] (13)

=E| [ n.vy) T [1-n(U.vp)]
{i.J}e€(S) {i,j1eE(S)

Yps)

where G denotes the complement of the graph G: the graph defined on the same
nodes as G with an edge present if, and only if, it is not present in G. The graph sum
of G and G therefore coincides with the complete graph K VG)|-

Call the expectation of ting (S, Gy) the induced subgraph density of § in the
graphon h (-) and write it as, in an abuse of notation, E [ting (S, Gn)] = ting (S, h) =
P (S). Clearly Py (S) is an unbiased estimate of tjng (S, h) = P (S) when the true
network generating process is of the CID type. Notice how the graphon provides
a language for connecting empirical graphlet counts, first studied by Holland and
Leinhardt (1970), with well-defined probabilistic objects. This connection will prove
useful for developing a procedure for conducting inference on P () using the sample
graph G . Since P (S) generally varies with the graphon / (u, v), the idea is that by
identifying P (S) for enough specific configurations (e.g., S = A, A, [1, N\ etc.), we
may be able to identify & (u, v) itself (cf., Bickel et al., 2011).

Injective homomorphism density

A second notion of subgraph density also appears in some of the results which fol-
low. Let S € G denote that S is a partial subgraph of G. Using Definitions 2 and 4,
we can also define what I will call, following Lovész (2012), the injective homomor-
phism density.'> The homomorphism density gives the probability that a (partial)
subgraph of Gy [ip], for i, chosen uniformly at random from A, y, is equal to S.
Alternatively the homomorphism density equals the fraction of injective mappings
¢ : V(S) = V(Gy) that preserve edge adjacency. These mappings do not need to
preserve non-adjacency.'? The injective homomorphism density of S in G y equals

12 The Lovész (2012) monograph presents several different notions of a subgraph density. The two intro-
duced here were chosen for their connection to actual empirical practice. See also Diaconis and Janson
(2008).

13 In contrast the induced subgraph density requires preservation of both adjacency and non-adjacency.
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O (S) = > 1(RSGy) (14)

(1;) liso (S)] RCKy,R=S

-t > 1R=s) [] Dy

N .
(p) liso ()] re gy v (R)=p {i,jYeE(R)

d
=) tinj (S, GN)

The two equivalent definitions are given to develop familiarity with notation. To un-
derstand expression (14) it is helpful to calculate the injective homomorphism density
of § = A in Gy = N. There are three isomorphisms of the two star configuration
such that (g) liso (/\)| =4 -3 = 12. Next consider the summation in the first line of
(14). This summation is over all 3¢ order partial subgraphs of K4 which are isomor-
phic to § = /\. There are exactly 12 two star partial subgraphs in K4 (three for each
of its four triads), a total of 8 of these configurations are subgraphs of G such that
tinj(/\, N) = % Note that the induced subgraph density of S = /\ in Gy = [ is just
2

2°
Under an Aldous-Hoover GGP we have

! > 1(R=S)

Eltinj (5. Gn) | = F——
[fin ] (1;’) lis0 () re gy 1V (R)=p

xE|[E l_[ D,’j Ui,...,Un
{i,j}e€E(R)

=K l_[ h(U,',Uj)

{i,j}eE(S)

Q(S).

de

~

Call the expectation of fiy; (S, Gy) the injective homomorphism density of S in the
graphon h () and write it as E [tinj (S, GN)] =tinj ($, h) = Q0 (S).

3.6 Graph limits
Let Gy be a finite exchangeable graph with adjacency matrix D. Let

1 if ([uN7,[vN1)e&(Gy)

hey (u,v) =
N 0 otherwise

Observe that i, (1, v) is a valid graphon and further that

find (S, GN) = tina (S, hay)
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for any S of order K < N (Chatterjee, 2017, p. 28). This equality connects the defi-
nition of the induced subgraph frequency of S in Gy, denoted by Py (S) in Eq. (11),
with its “population” counterpart — Eq. (13). It also motivates the idea of the graphon
as the appropriate limit object for a sequence of graphs, G y. If the subgraph fre-
quency

Nli_r)nootind (S.hgy)

converges to some limit for all fixed subgraphs S, then we say that Gy has a limit.
Lovasz and Szegedy (2006) showed the natural limiting object is a graphon (i.e.,
heuristically, hG, — h as N — oo). Diaconis and Janson (2008) connect this finding
with the Aldous-Hoover representation theorem. Collectively these results motivate
an approach to summarizing a network by the frequency of different low order sub-
graph configurations within it; by its average local structure. Lovész (2012) provides
a rigorous and comprehensive introduction to theory of graph limits.

3.7 Sampling

In this chapter I will adopt two perspectives on “sampling”. In the first we view the
network in hand as the one induced by a random sample of agents from some large
(i.e., infinite) population. Let G, be an (infinite) exchangeable random graph. Let
V be a random sample of agents of size N from G,. We assume that the observed
network, G y, coincides with the subgraph induced by this random sample of vertices:

Gn =G [V]. 15)

Let Doy = [Djj] with i, j > 1 be the adjacency matrix of Goo. Exchangeability
implies the characterization

DijZI(h(Ol,Ui,Uj)EVij) (16)

with &, U; and V;; = V}; independent { [0, 1] random variables (cf., Aldous, 1981;
Hoover, 1979). Here & : [0, 1]3 — [0, 1] is symmetric in its second and third argu-
ments.

Under (15) the elements of D, the adjacency matrix for the network in hand, also
obey the characterization (16). The “sampling distribution” of some statistic of D,
say ty (D), is simply the one induced by repeated random sampling from the under-
lying infinite population. We calculate limit distributions by studying the sampling
distribution of t (D) as N — oo.

An advantage of this first perspective is that it allows the econometrician to fully
exploit the independence/dependence structure associated with the Aldous-Hoover
Theorem. If the graph in hand is the one induced by a random sample of agents from
some infinite exchangeable population, then we can proceed “as if”

Djj|U;, U; ~ Bernoulli (h (U;, Uj)) (17)
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fori=1,...,N—1and j=i+1,..., N. Although (17) is a nonparametric data
generating process, it is a structured one. We can use this structure to our advantage.

An unattractive feature of this perspective is that if the density of the population
graph is very low, then that of the sampled graph may be empty with high probability.
To see this point heuristically assume that the population consists of N* agents, with
N* very large. Assume that average degree, A, is some small positive constant that
does not dependent on N*. The probability of observing an edge between the two
independent random draws from the population is thus

1
AN
N*
(%)

Boole’s inequality then gives a probability of observing at least one edge in our
sampled network no greater than (g] )A /N*, which will be close to zero when N <<

o

A
PI'(D]2=1)= m

V/N*. When the population graph is “sparse”, it is quite likely that the subgraph
induced by a random sample of agents from it will be empty and hence completely
uninformative. See Crane (2018, Chapter 3) for more discussion and examples.

This example raises two questions. First, how does one sample from a large sparse
graph in practice? I ignore this question here, but flag it as an interesting one which
merits thought. The monograph by Crane (2018) surveys extant work in this area.
Second, if the sampling is fictitious (i.e., analysis is based upon the full graph), what
mistakes might be made by proceeding “as if” we had randomly sampled from some
(now entirely hypothetical) large graph?

To answer the second question, it is useful to return to an empirical example. Ata-
lay et al. (2011) study the supply chain network of large publicly traded firms in the
United States. Their network is not sampled, but rather constructed from Securities
and Exchange Commission (SEC) reports filed by the entire universe of publically
trade firms. If the model of network formation of interest is a conditional indepen-
dent dyad (CID) one, then we are free to proceed “as if”” the observed network were
generated according to (17). If, instead, we view the network in hand as, for exam-
ple, an equilibrium of a finite N-player supply chain formation game, then it may
be difficult to justify (17); strategic interaction may induce dependence across links
that cannot be conditioned away. We cannot appeal directly to the Aldous-Hoover
Theorem.

As in de Finetti (1931), the Aldous-Hoover Theorem requires that the agent in-
dices constitute an infinite sequence. However, just as the de Finetti result fails for
finite sequences (e.g., Diaconis, 1977), but approximately holds when the sequence
is large enough (e.g., Diaconis and Freedman, 1980), the hope is that in large (but
finite) networks Theorem 1 remains useful (cf., Volfosky and Airoldi, 2016).

One possibility would be to assume that N is large enough such that a represen-
tation like (17) “approximately” holds. One could then conduct inference on model
parameters by comparing observed network moments with model generated ones.
The sampling distribution of the observed network moments would be calculated as-
suming an Aldous-Hoover DGP (which is appropriate for N large enough). I sketch
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this idea in a bit more detail in Section 8 below. Many gaps in this discussion remain.
Alternatively we could proceed along the lines of Menzel (2016). In this approach
we would approximate our finite player network formation game, with a limit game
which is easier to deal with (see Section 8).

3.8 Adding sparsity: the Bickel and Chen (2009) model

For any finite network of unlabeled agents, exchangeability is a natural, indeed un-
avoidable, modeling assumption. Unfortunately its extension to infinite exchange-
ability, as needed for Theorem 1, has the unattractive implication that the network
is either empty or dense in the limit. Specifically a (random) agent will either never
form links or do so infinitely often as N — oo. Denseness and sparseness are limit
properties of infinite sequences of graphs. Any empirical network is neither “dense”
nor “sparse”, it just is what it is. However, in most real world networks the numbers of
agents and links are of similar magnitudes. This suggests that approximation results
based on sequences of graphs that are sparse in the limit may be more useful than
those with dense limits. Whether this is, in fact, the case remains an open question
(Green and Shalizi, 2017).

One way to model sequences of graphs with sparse limits, while still preserving
the analytic convenience of conditional independence across edges, was proposed by
Bickel and Chen (2009). The Bickel-Chen model is the default one in the nonpara-
metric statistics and machine learning literatures on random graphs.

Let Gy be arandom network of order N generated according to (8). The expected
average number of links an agent has in this network, that is average degree, equals

An=NN —=1)pq (18)

for p, = f h (e, u, v) dudv. Average degree (18) either tends toward infinity or is
zero, depending on whether p, is greater than or equal to zero.

To extend model (8) so that it can accommodate sparse graph sequences Bickel
and Chen (2009) define the conditional density

We (1, v) = fUi,U_/|D;_,~,a (u, v|Djj =1, O[) .
Next observe that since fy, 1,1, (4, v|@) =1 on [0, 11> we get can decompose
the graphon as '
h(a,u,v) = pgwy (U, V). (19)

With this parameterization, Bickel and Chen (2009) and Bickel et al. (2011) argue
that it is natural to let p, = py, N, but retain independence of wy (¢, v) from N. Sup-
pressing the v argument (it is never identifiable), they write

Pr(Dij=1|Ui=u,Uj=v)=hy u,v) = pyw (u,v). (20)

The rate at which py — 0 then controls the rate of average degree growth as N grows
large. If Ay = (N — 1) py — A with0 < A < 0o as N — oo, then the graph is sparse.
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If Ay = Q2 (N) we say the graph is dense, Ay = Q2 (In N) semi-dense etc. Many of the
results presented below require that Ay = Q (N®) for some 0 < o < 1, despite the
fact that Ay = €2 (1) might best describe real world networks (where average degree
is generally low even when N is very large). In what follows I will try to highlight
those few known results which can accommodate sparse graph sequences.

3.9 Further reading

Orbanz and Roy (2015) provide a non-technical introduction to the probability liter-
ature on exchangeable random arrays; the monograph by Kallenberg (2005) a more
complete development. Crane (2018) also surveys this material, at a fairly accessible
level, and with a somewhat contrarian point of view.

Lovasz (2012) provides an overview of the theory of graph limits. Diaconis and
Janson (2008) connect much of this theory to the older literature on exchangeable
random arrays.

4 Dyadic regression

Jan Tinbergen’s 1962 report Shaping the World Economy, commissioned by Twenty
Century Fund, featured, along with its sculptural title, a remarkable empirical anal-
ysis of trade flows (Tinbergen, 1962). Table VI-1 in that report presented the results
of a least squares fit of the logarithm of exports from country i to country j onto a
constant, the (log) Gross National Product (GNP) of both countries i and j, the (log)
distance between i and j, and a variety of other covariates capturing different rela-
tionships between i and j. Tinbergen’s (1962) analysis was based upon a sample of
N = 18 countries, or N (N — 1) = 306 directed trading relationships.'*

Table VI-1 of Tinbergen (1962) presents the results of what I will call a dyadic
regression analysis. This particular analysis continues to serve as prototype for a
substantial body of empirical work in international trade (Anderson, 2011). Dyadic
regression analyses also appear in other areas of social science research. They have
been used, to give just a few recent examples, to study the onset of war among na-
tion states (e.g., Russett and Oneal, 2001), risk-sharing across households (e.g., De
Weerdt, 2004; Fafchamps and Gubert, 2007; Attanasio et al., 2012), supply chain
linkages across firms (e.g., Atalay et al., 2011, Table S3), the formation of com-
mercial R&D collaborations (Konig et al., 2019, Table 4), and co-camping behavior
among hunter-gathers (Apicella et al., 2012, Tables S2 to S49).

Familiar methods of econometric analysis appropriate for single agent models,
typically utilizing a random sample from the population of interest, are ill-suited for
dyadic settings (cf., Cameron and Golotvina, 2005). Consequently, considerable con-
fusion and controversy is associated with dyadic analyses in practice (e.g., Erikson et

14 A second analysis, based upon a larger sample of countries, was also reported upon in Table VI-4 of
the report.
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al., 2014). It is remarkable that, over a half-century after Tinbergen’s (1962) pioneer-
ing analysis of trade flows across countries, and also given the considerable empirical
work that has followed, a textbook treatment of estimation and inference methods for
gravity and other dyadic regression models remains unavailable.

4.1 Population and sampling framework

Let i € N index agents in an infinite population of interest. Associated with each
agent is the observable attribute X; € X = {x1,...,x}. This attribute partitions
the population into L = |X| subpopulations which I will refer to as “types”. Let
N(x;) = {i : X; =x;} be the index set for type / agents. Although L may be very
large, I assume that the size of each subpopulation, |N (x)|, is infinite with positive
frequency (i.e., Pr(X; =x;) >0forl=1,...,L).

When all observable agent attributes are discretely-valued, then X simply enumer-
ates all distinct combinations of these attributes (e.g., X = x; might correspond to a
Hispanic female, living in the Florida, with 12 years of schooling and two college-
educated parents). More heuristically we can think of X as consisting of the support
points of a multinomial approximation to the support of a bundle of attributes, some
of which might be continuously-valued. The finite support restriction is made in or-
der to invoke a representation result due to Crane and Towsner (2018); I do not think
it is essential.

Associated with each ordered pair of agents is the scalar directed outcome Y;; €
Y € R. I will refer to agent i as the “ego” of the directed dyad and agent j as its
“alter”. In the context of the trade example the ego agent is the exporting country, the
alter the importing one. The adjacency matrix [Y,- f]i,j o collects all such outcomes
into an infinite random array.

From the standpoint of the econometrician, the indexing of agents within subpop-
ulations homogenous in X; is arbitrary: agents of the same type are exchangeable.
Exchangeability of agents within subpopulations homogenous in X; induces a partic-
ular form of exchangeability on the adjacency matrix. This form of exchangeability,
in turn, induces a particular form of dependence across the rows and columns of
[Y; j]i,jeN‘ The structure of this dependence allows for the formulation of LLNs and
CLTs.

Let oy : N — N be any permutation of a finite number of the agent indices which
satisfies the restriction

[Xo:) iy = [Xilien- @1

Condition (21) constrains index permutations to occur among agents of the same
type (i.e., we may permute the indices in N (x), but not those within, for example,
N (x) UN(x')). Crane and Towsner (2018) call a network relatively exchangeable
with respect to X (or X-exchangeable) if

[YUx(i)Ux(j)]i,jeN = [Yij]i,jeN (22)
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for all permutations o, satisfying (21). X-exchangeability is a natural generalization
of joint exchangeability, as introduced in the context of the Aldous (1981) and Hoover
(1979) Theorem earlier.

A insightful way to think about condition (22) is in terms of vertex colored
graphs. Associate X; with the color of a vertex; condition (22) states that all colored
graph isomorphisms are equally probable. Since, when vertices of the same color
are exchangeable, there is no reason to attach more or less probability to particular
isomorphisms of a given vertex colored graph, any probability model for [Yi./']i jeN
should be consistent with condition (22). As long as X; encodes all the Venex—speéiﬁc
information available to the econometrician, then X-exchangeability is a nature a pri-
ori modeling restriction.

Let o, {(U;, Xi)};>1 and {(Vij, Vji)}izl,jzl be (sequences of) i.i.d. random
variables, additionally independent of one another, and consider the random array

[Y l.*.] generated according to the rule
J1i,jeN

Yij':il(a, Xi, X, Ui, U}, Vij) 9

with /1 : [0,1] x X x X x [0, 1]3 — Y a measurable function (we normalize «, U; and
Vij to have support on the unit interval without loss of generality). Clearly a graph
generated according to (23) is X-exchangeable (cf., Crane, 2018, Chapter 8).

Here « is a mixing parameter analogous to the one appearing in de Finetti’s
(1931) original representation theorem. Since this parameter is unidentified, and the

focus here is upon inference conditional on the realized data distribution, I will de-

. d
press the dependence of & on «, defining the notation & (X,-, X;, U, U;,V; j) éf

h (a, Xi, X;,U;,U;,V; j). Consistent with earlier terminology, the function £ : X x
X x [0, 11 — Y will be referred to as a graphon.

Because doing so is convenient for the discussion of causal inference in dyadic
settings which follows, (23) makes no presumption of independence between X; and
U;. Of course we can always write

Yi=h(Xi. X}, Fu,x, (Uil X0), Fuyix, (Uj] X)) Vij)

d
L e (X0 X, U7, U7, V)

with U = Fy,x, (U;| X;) equal to unit i’s rank among all those units of her type.
The resulting { ur }i>1 sequence of 0-to-1 uniform random variables is independent
of {X;};> by construction (cf., Graham et al., 2010).

Depending on the context, it is fine to work with either & or £*, but, as explained
below, the former is more useful for making causal arguments; hence I allow for de-
pendence between the observed covariate vector X; and the unobserved unit-specific
effect U; in what follows (akin to a correlated random effects panel data analysis).
The nuances involved will become clear as we proceed.
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Networks generated by (23) exhibit a very particular pattern of dependence across
the rows and columns of [Y,- J]i e Consider, without loss of generality, agents 1, 2,
3 and 4. The outcomes Yi» and Y34 are independent of one another; the outcomes
Y12 and Yj3 are, however, dependent. These two outcomes share agent 1 in com-
mon; the value of X and U; influences both Y1, and Y3, inducing dependence. But
conditional on (X1, X2, X3) and (Uy, U, U3), Y12 and Yj3 are independent; if we
condition on the observed covariates (X1, X2, X») alone, however, they remain de-
pendent. Finally Y1, and Y»; are dependent, this dependence holds even conditional
on (X1, X3) and (U, Up) because Vi, and Vo1 may covary.

In words we have independence across dyads sharing no agents in common (ex-
ports from Japan to the United States and from Turkey to Germany), dependence
across those sharing at least one agent in common (exports from Japan to the United
States and from Japan to the United Kingdom), and “even more” dependence across
dyads sharing both agents in common (e.g., exports from Japan to the United States
and vice-versa).

Models with this type of dependence structure, as already noted, are called condi-
tionally independent dyad (CID) models. The “conditionally independent” terminol-
ogy reflects the fact that the outcomes Y and Y3, associated with a pair of dyads
sharing one agent in common, can be rendered independent of one another by con-
ditioning on the observed covariates (X1, X2, X2) as well as the unobserved latent
attributes (Uy, Ua, U3).

Crane and Towsner (2018), in an extension of the Aldous-Hoover representation
result described earlier, show that for any X-exchangeable random array [Yi J]i,j N

there exists another array [Y;}] N generated according to (23) such that the two

i,je
arrays have the same distribution:

D
(Y], jen 2 I:Y;;]i,jeN' (24)

We can therefore use (23) as an ‘as if” non-parametric data generating process for
[Yi j]i,jeN; this will facilitate a variety of probabilistic calculations (e.g., computing
conditional expectations, variances and, especially, covariances).

Leti =1,..., N index a simple random sample from the target population. For
each of the N sampled units the econometrician observes X; and for each of the (g’ )
sampled dyads she observes (YU, Y /,'). From hereon I will assume that Y;; is unde-
fined (normalized to zero for convenience). Adapting what follows to accommodate
self-loops is straightforward.

4.2 Composite likelihood

Let { friix,.x, (Y12 X1, X2;0) : 0 € © S RI™O 1} be a parametric family of distri-
butions for the conditional distribution of Y, given X and X». For example, Santos
Silva and Tenreyro (2006) model trade from exporter i to importer j given covariates
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as a Poisson random variable:

{exP [Wi/je] }yij 25)

Froixx, (vij| Xis Xj:0) =exp [— exp I:Wi/je:l] Vi
A def .

with y;; =0,1,2,...and W;; = w (Xi, Xj) a known J x 1 vector of functions of

X; and X ;. As an example, if X; = (InGDP;, LAT;, LONG;)’, then setting

In GDP;

Wl/ — IHGDPj

1/2
In [(LATi — LAT;)? + (LonG; — LONGj)z] !

results in a basic gravity trade model specification. '
Similar to Russett and Oneal (2001), a researcher might model the conditional
probability that country i attacks country j using logistic regression such that

Froxix, (vif] Xi. Xj:0) = [F (W{J-Q)]yﬁ [1 —F(Wi/j@)]l_yij (26)

with y;; =0, 1 and F (W;je) = exp (W’ 0) / [1 +exp (W;je)].

An important feature of both (25) and (26) is that they only specify the marginal
distribution of Y;; given X; and X ;. The econometrician is not asserting, for example,
that

Fynvisix x,x; (V12 Y131 X1, X2, X3;6)
= friix,x, (Y121 X1, X250) frixi.x, (y131 X1, X3: 0),

since doing so would imply independence of Yi» and Yj3 given covariates; but
such dependence is precisely the complication under consideration. Formulating a

d
conditional likelihood for the entire adjacency matrix Y 24 [Y; j]1<i j<N.izj EiVen

d
X = < [Xili<i<ny would require an explicit specification of the dependence struc-

ture across dyads sharing agents in common. In contrast fy,,|x, x, (Y12] X1, X2;6),
which is a model for the marginal distribution of Y|, alone, does not require modeling
this dependence.

Let ;; (8) = In fy,x,.x, (Yij| Xi, Xj;0) and consider the estimator which
chooses 6 to maximize:

0 = l;; (0 27
arg%rleaSN(N ;;U() (27)

15 10 practice distance is measured using the so-called great circle formula; which accounts for the curva-
ture of the Earth’s surface.
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Because its summands are not independent of one another — at least those sharing
indices in common are not — (27) does not correspond to a log-likelihood function
for Y given X. Instead it corresponds to what is sometimes called a composite log-
likelihood (e.g., Lindsey, 1988; Cox and Reid, 2004). A composite likelihood “is
an inference function derived by multiplying a collection of component likelihoods”
(Varin et al., 2011, p. 5). Although (27) fails to correctly represent the dependence
structure across the elements of the adjacency matrix, if it is based upon a correctly
specified marginal density, 6 generally will be consistent for 6. This follows because
the derivative of composite log-likelihood is mean zero at & = 6y under correct speci-
fication of its components. While an appropriately specified composite log-likelihood
typically delivers a valid estimating equation, accurate inference is more challenging,
since the unmodeled dependence structure in the data does need to be explicitly taken
into account at the inference stage.

4.3 Limit distribution

Consider a mean value expansion of the first order condition associated with the
maximizer of (27).'¢ Such an expansion yields, after some re-arrangement,

VN (8- 60) = [~ Hy (8)]" VNS 60)

with 6 a mean value between § and 6 which may vary from row to row and the +
superscript denoting a Moore-Penrose inverse. Here Sy (6p) is the “score” vector

SN <9>—Nﬁ22sq Zij.0) (28)
i j#

/
with s (Zij, 0) = dl,; (0) /96 for Zij = (Yi;, X[, X}) and Hy (6) = % %5 x

a27..
iy it %. If the Hessian matrix Hy (0) converges in probability to the in-

vertible matrix I'g, as I will assume, then

ﬁ(é _ 90) = —T;'"VNS (60) + 0, (1)

so that the asymptotic sampling properties of v/ N (é — 90> will be driven by the

behavior of /NSy (6p).

As with the composite log-likelihood criterion function, the summands of
VN S~ (Bp) are not independent of one another (cf., Cameron and Golotvina, 2005;
Fafchamps and Gubert, 2007). A standard central limit theorem cannot be used to

16 A general result on consistency of 6 could be constructed by adapting the results of Honoré and Powell
(1994).
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demonstrate asymptotic normality of ~/N Sy (6p). Fortunately Sy (6p), although not
a U-Statistic, has a dependence structure similar to one. This insight can be used to

derive the limit properties of vN (é — 9()).
Begin by re-writing Sy (6p) as

Ny =1 N Sij + 8ji
sv=0)" 2 2 : (29)

where s;; dif ) (Z, iz 90) and S N S N (Bp). While (29) has the cursory appearance
of a U-Statistic it is, in fact not one: Y;;, which enters s;;, varies at the dyad level,
hence Sy is not a function of N i.i.d. random variables.

Let U = [U;];<;<n; the projection of Sy onto the observed covariate matrix X
and the unobserved vector of unit-specific effects U equals:

def —1 Sij+8;i
Vv = E[SvIX, U= (D) > 5 (30)

i<j
.. _ def _ _ Lf
with Sij =5 (X,', Ui, X;, Uj) and s (X,', Ui, X;,Uj ) E[ (Zij,00)| Xi, Ui, Xj,
U j]. The expression to the right of the equality in (30) follows from the Crane and
Towsner (2018) representation (23) and independence of V;; from (X, U).

An important observation is that the projection (30) is a U-statistic of order two:
specifically it is a summation over all (1;/ ) dyads that can be formed from the i.i.d.
sample {(X;, U;)}|<;<y. Unusually our U-statistic is defined in terms of a combina-
tion of both observed {X;},<;<y and unobserved {U;}, -, <y random variables.

The projection error Ty = Sy — Vv consists of a summation of (g] ) conditionally

uncorrelated summands; hence V (Ty) = (N)_IE(V(Wi X1,U1, X2, Uy)) =

2
O (N7?) (as long as V (225221 X, U, X, U,) does not change as N — 00). We
also have that Ty and Vy are uncorrelated by construction.

Although we cannot numerically compute Vy — even if 6y is known — because
the {U;};<;<y are unobserved, we can use the theory of U-statistics to characterize
its sampli_ng_ properties as N — oco. Decomposing Vy into a Hajek projection and a

second remainder term yields (e.g., Lehmann, 1999; van der Vaart, 2000):
VN =Vin + Von

where, defining 5¢ (x,u) =E[s (x,u, X1, Uy)] and 5¢ (x,u) =E[5 (X, Uy, x, u)],

Vi __2{51 (XI,UH- (Xi,Ui)} 31)

_ S
vav=(%"' Y {— -

i<j
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R UD S XU 5 (X5, Up) + 5 (x,-,u,-)} a2
2 2 '

The superscript ‘e’ denotes ‘ego’ since it is the ego unit’s attributes which are being
held fixed in the average used to compute 5¢ (x, u). Similarly the ‘a’ denotes ‘alter’,
since it is that unit’s attributes which are held fixed when defining 5¢ (x, u). Conve-
niently Vyy is a sum of i.i.d. random variables to which, after scaling by +/N, a CLT
may be applied. Furthermore it can be shown that V (Vo) = O (N _2).

Putting these results together yields the asymptotically linear representation

Jﬁ(é —90) =Ty 'WN (Vin + Vay + Ty) + 0, (1)
=—Ty'VNViy +o0, (1)

__F—li Y {ff(xi,Ui)-i-Ef(Xi,Ui)
PN G 2

}+0p(1)7

and hence a limit distribution for /N (é — 9()) of

ﬁ(é—@o)2/\/(0,4(1“621—11“0)_1) (33)

where X =V

sumptions maintained here, its limit distribution coincides with that of V (which is
a U-statistic).

Before turning to practicalities of variance estimation I will present a useful
property of the kernel entering the Héjek Projection, V| above. By the usual condi-
tional mean zero property of the score function we have that E[s (Z12; 6p)| X1 = x1,
X> = x2] =0 as long as marginal density of Y1, given X and X> is correctly speci-
fied. This property can be used to show that the averages, Ef (X1,Uy) and E]“ (X1, Uy,
are also conditionally mean zero. Taking the former we have that

54X 59(X . ..
(S'( I’Ul);s'( 1’U1)>. Although Sy is not a U-statistic, under the as-

E[5 (X1, UD| X1 =x1]

=/ //5(361,”1,)62,”2) fx.0 (xz,uz)dxzduz] Sunx, (urlxy)duy

=/ //f(m,ul,m,uz)fwxl (uzlx2) fx, (X2)dX2du2:| Sunx, (urlxy) dug

=/ //f(m,m,m,uz)fwxl (u1lx1) duy fu,x, (uzlxz)duz] fx, (x2)dxz

=/]E[§(X1, Ui, X2, Up)| X1 = x1, X2 = x2] fx, (x2) dx2
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= [E[S(le;90)|X1 =x1, X2 =x2] fx, (x2)dx2
=0

where the first equality follows from the definition of Ef (X1, Uy), the third from a
change in the order of integration, and the second to last from iterated expectations.
These calculations imply that

E[5{ (X1, UD| X1, X2] =E[5{ (X1, UD| X1, X2] =0

and hence that [Ef (X1, Uy) + 57 (X1, Ul)] /2 is conditionally mean-zero given X
and X». This property will be helpful for understanding the asymptotic precision of
estimates of various causal parameters introduced below.

4.4 Variance estimation
In order to conduct inference on the components of 8y, an estimate of the variance of
VN <é — 9()) is required. Although the distribution theory outlined above is novel,'”
the history of variance estimation for “dyadic statistics” goes back at least to Hol-
land and Leinhardt (1976). In economics, a variance estimator first proposed by
Fafchamps and Gubert (2007), is widely — although not universally — used for dyadic
regression analysis. In order to understand extant approaches to variance estimation,
as well as to propose new ones, it is helpful to examine the structure of Sy’s variance
in detail.

The arguments used to derive the limit distribution of v/N (é - 90) above suggest
that it may be insightful to think about the variance of Sy in terms of the ANOVA
decomposition

Vy) =VE[SyIX, U) +E[V(SylIX, U)]
=V (Vy) +V(In)
=VVin) +V(Van) +V(Ty), (34)

where the second and third equalities follow from the decomposition for Sy devel-
oped in the previous subsection.

Let p = 1, 2 equal the number of agents dyads {iy, i} and {ji, jo} share common
and define the matrix X, as

&ef <s (Xiy, Uiy, Xis, Up,) +5 (Xiy, Uiy, Xiy, Uiy 5)

s, 2 5 :

17" See Tabord-Meehan (2018), Davezies et al. (2019) and, especially, Menzel (2017) for related indepen-
dent work.
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5 (ij Uji, X sz)/ +5 (ijv Uj,, Xy Ujl)/)
2

2
g | Sk t Sji
2

—C (]E |: Sitiy T Siziy

Xils Uilv Xi27 Ui2:| ’

/
XjUj, Xjs, Uj2:| ) :

When p =1 we have

/
21=(C(E|:m )(’1,U1,X2,U21|,H‘3|:M Xl,Ul,X3,U3:|>
/ _"_ li
—C Sl2+s21’s13 531 ’
2 2

with the second equality an implication of conditional independence of % and
w given (X1, X2, X3) and (Uy, Us, U3). Hence X equals the covariance be-
tween any pair of summands in Sy — see Eq. (28) above — sharing an index in com-
mon. There are many such pairs of summands in Sy (actually %N (N=-1 (N —-2)

such pairs-of-dyads). It is the preponderance of these non-zero covariances that drives
their importance for understanding the sampling distribution of ~/N (é - 90).
In a slight abuse of notation, additionally define the matrix

d
< lef & |:V<Sl2 -;Szl

X1,U1,X2,U2>]- (36)

Calculations analogous to those use in variance analyses for U-statistics (e.g., Ho-
effding, 1948; Lehmann, 1999) yield

YV (Vi) = 2 37)
N
2
V(Von) = NN-D (X2 —2%y) (38)
2
V(Tn) = m23’ (39)

d
such that, defining the notation £ Yy (WSN), from (34), (37), (38) and (39):

2
Q=4%1 + 5 (B2 + Z3 - 2%0). (40)

Consistent with the form of the limit distribution given in (33), the variances of
Von and Ty are of smaller order. Although the contribution of these terms to the
variance of ~/N Sy is asymptotically negligible, their contribution for finite N need
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not be. As alluded to earlier, the appearance of the covariance X as the leading term
in (40) reflects the large number of non-zero covariance terms that arise when the
variance operator is applied to the sum Sy = (3 )_l >Nt Z;v:i +1 S”Jr% In prac-
tice, especially if i (x1, x2, u1, uz, v12) is nearly constant in u1 and up, 31 may be
small in magnitude. In such cases it may be that 4% and % (X + X3 —2%) are
of comparable magnitude for modest N. Using a variance estimator which includes
estimates of both these terms may therefore result in tests with better size and power
properties (cf., Hoeffding, 1948; Graham et al., 2014; Cattaneo et al., 2014). To con-
struct such an estimator I propose using analog estimates of the terms appearing to
the right of the equality in (40).

A benchmark analog variance estimate
A natural analog estimate of X1, the leading variance term, is

A N —le2 N 1 §ij +§j,' Sik + Ski !
21=() 23 2 2

§,'j +§j,' fjk-i-fkj /+ Sik + Ski .’Y\jk-f-fkj ! @1
2 2 2 2 ’

with §;; = s (Z,'j, é). Eq. (41) is a summation over all (1;’) =INWN-1)N-3)
triads in the dataset. Each triad ijk can be further divided into three pairs of
dyads, {ij, ik}, {ij, jk} and {ik, jk}, with each such pair sharing exactly one agent
in common. Eq. (41) corresponds to the sample covariance of (§i i +S ji) /2 and
(Sik + Ski) /2 across these 3(1;’ ) pairs of dyads.

To construct an estimate of V («/N SN> separate estimates of ¥, and X3 are not

required, only their sum is needed. Using an ANOVA decomposition we can express
this sum as

Yo+ 23 =V<E|:M X1, U1, X, U2]>
+E[V<¥ X1, U1, Xa, Uz)}

S12 + 521
(252)

This suggests the analog estimate

— Nle_l N Sij+8ji Sij+8ji !
2:2"‘232(2) Z 2 2 ) (42)

i=1 j=i+1
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From (40), (41) and (42) we get the variance estimate
\% («/N (é - 90)) - (ﬁ’{rlf)_l 43)
where
f —Hy (9) (44)
Q:@ﬁ%(zﬂ\m—zil). (45)

Fafchamps and Gubert (2007) variance estimate

Just over a decade ago, Fafchamps and Gubert (2007) presented a variance-
covariance estimator for 0 that they informally argued leads to asymptotically correct
inference.'® They proposed estimating the variance of /N Sy by

R 1 SiiinS
QG :m Z Z Z Z CiliZjljZSilizs.;l.fZ’ (46)

iy D#EL J1 2F
where Cj\i,j,j, = 1 if i1 = j1, i2 = jo, i1 = j» or ip = j; and zero otherwise (here
the ‘or’ is inclusive).'” Eq. (46) is a summation across (%) x () “pairs-of-pairs” or

pairs of dyads. As noted above, there are 3(1;’ ) =INWN-1H(N=2) unique pairs of

dyads sharing one agent in common; but each of these pairs of dyads is counted eight

different times in (46). Likewise there are (];]) = LN (N — 1) pairs of dyads sharing

both agents in common (i.e., straight up dyads) and each of these pairs is counted
four different times in (46). From this observation we have that

A 1

1 - 1 —
Qrg=—"—|8X NI N-1)(N-2)E1+4x - N(N—-1H)Z by
FG N(N—l)z[ X 5N ( ) ( ) +ax SN ( ) X2+ 3]

. VI
=435 —(2 > —22),
1+N—1 2+ 23 1

which exactly coincides with expression (45) above. Not only does QFG include a
consistent estimate of the leading term in V («/ NS N), but it also includes an estimate

of the asymptotically negligible higher order component.
Fafchamps and Gubert (2007) is widely-cited in the context of covariance estima-
tion by empirical researchers, with a STATA implementation for linear and logistic

18 This estimator has been further explored by Cameron and Miller (2014), Aronow et al. (2017) and
Tabord-Meehan (2018).

19 My definition of fZFG actually differs slightly from the one given by Fafchamps and Gubert (2007),
due to a finite sample correction term introduced in the latter. Their expression also appears to include a
notational inconsistency with N (apparently) denoting both the number of agents as well as the number of
dyads (here n = 1y (N — 1)) in different components of the expression. Once these typos are corrected
(46) agrees with their expression up to a finite sample correction.
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dyadic regression freely available (cf., Cameron and Miller, 2014). Consequently
considerable practical experience and Monte Carlo evidence on the properties of
standard error estimates based on (46) exists. Among empirical researchers, the con-
sensus is that such standard errors are often much larger than those based on the
(possibly erroneous) assumption of independence across dyads.

Snijders and Borgatti (1999) jackknife variance estimate
Snijders and Borgatti (1999), inspired by the prior work of Frank and Snijders (1994),
suggest’” a jackknife variance estimate for V («/ﬁ S N) of

= (52) Sl () -5 @) 50 () -] -

where Sy _; (0) is the average of the dyadic scores over the (N 2 1) dyads which do
not include agent i:

Sy _i (Q)difN 1 Z Z Zjk; 0 +S(Zkl’9)

j=1k=j+1

_Zs(Zi1;0)+S(Zu;9)

- 2
1#£i

The Snijders and Borgatti (1999) proposal, the basis of which they acknowledge was
primarily intuitive, does not provide a consistent estimate of V (\/N S N), but, as I

will now show, a slight modification of their proposal does.
With some manipulation we can write, defining

Z;i: 0 Zii: 0
sn(e)d‘le_lZs( - );s( o
J#

(in a slight abuse of notation),

Swe-i @) = Sn @ = ("3 [()sw @) = V= D51 )] - sy ©)

:_N2_2 [§1,- 6) — Sy (9)]. (48)

~ def a ~ . . .
Observe that sy; Ef S1i (9) would be the usual estimate of the i’ summand in

the Hajek projection given in (31) above (see, for example, Callaert and Veraverbeke

20 They actually propose a jackknife estimate for the variance of Sy . I have multiplied their expression

by N to get the corresponding expression for the variance of /NSy (see Equation (2) of Snijders and
Borgatti (1999)).
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(1981) or Cattaneo et al. (2014) and the references therein). Indeed, on the basis of
the limit theory outlined above, a natural estimate of X would be

|||\

N
Z 51:57; (49)

After some tedious manipulation it is possible to show that

~ A E;F\Xb—ﬁh
=21+ ——— 50
1 1 N1 (50)

=540, (N_l)

with £ and X, + %3 as defined in (41) and (42) above.
Eqgs. (48), (50) and the observation that Sy ( ) = 0 implies that the jackknife
variance estimate

o 25 50 3) 50 ()] [0 0) 5o 6)] o

provides a consistent estimate of the asymptotic variance ~/N Sy.
Furthermore, inspired by Efron and Stein (1981) and, especially, Cattaneo et al.
(2014), we can bias correct (51):

N def 2 — ~

Qk-BC = QK — N_1 (22 + 23) = QFg (52)
with Em3 as defined by (42) and the equality an implication of (50). Eq. (52)
implies that the Fafchamps and Gubert (2007) variance estimator, or equivalently the
analog estimator proposed above, coincides with a bias corrected jackknife variance
estimate. This is awesome.

4.5 Bootstrap inference

Relative to analytic variance estimation, the theory of the bootstrap for dyadic regres-
sion is comparatively less well-understood. Rewriting our dyadic regression coeffi-
cient estimate in pseudo-U-Process form yields

N-1

N

~ L (6 1i; (0

6 = arg max ———— Z {7”()4_”()}
eeON(N—l) pr et
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N . . .
Next let {Vib }i:] be a sequence of i.i.d. mean one random weights independent of
the data. One such sequence is drawn for eachof b =1, ..., B bootstrap replications.
In the b'" such replication we compute

N-1 N
. 2 b,b | lij (0) +1i (0)
e e D DD IR
i=1 j=i+1
. 1B
The bootstrap distribution {Hh}b | can then be used to approximate the sampling

distribution of 6. Letting Vl.b be an exponential random variable with rate parameter
1 results in a Bayesian bootstrap which is, of course, preferred. The above algorithm
was proposed in the context of U-statistics by Janssen (1994). If we let Vib equal
the number of times agent i is sampled from the set {1, ..., N} across N draws with
replacement, we get the proposal of Davezies et al. (2019), who show — under certain
assumptions — validity for the dyadic regression case considered here.

Snijders and Borgatti (1999) proposed a bootstrap procedure for jointly exchange-
able random arrays which is very close to the proposal of Davezies et al. (2019).
As with their jackknife variance estimator, their development was intuitive and in-
formal. For simplicity consider the application of their proposal for inference on
the dyadic mean ¥ = m P Z?’ziﬂ [%} Leti?, ..., i% be N indices
drawn uniformly at random (with replacement) from {1, ..., N}. Let Y? be the ad-
jacency matrix induced by {i{’ ey iﬁ,}. If agent j is sampled twice, say i{’ = j and

ié’ = j we face the practical problem that the outcome Y,5;» = Y;; is undefined. Sni-

jders and Borgatti (1999) propose filling in such cells with independent random draws
from {Y12, Ya1,..., YN—1n, YNN—1}; they note that the expected fraction of boot-
strap dyads constructed from a single underlying agent in the original sample will
be vanishingly small as N — oo (suggesting that this problem may not matter for
asymptotic properties). Snjiders and Borgatti’s (1999) algorithm essentially coincides
with the pigeon-hole bootstrap proposed by Owen (2007) for separately exchange-
able random arrays (in which the problem of “zero diagonals” does not arise).

A final bootstrap procedure is proposed by Menzel (2017). He is particularly con-
cerned with formulating a procedure that adaptively handles the possibility that there
is, in fact, no dyadic correlation in the data (i.e., £; = 0). Degeneracy of this type
occurs, in our regression setting, when the graphon £ (x1, x2, u1, uz, v12) is constant
in both u; and u, (but also in more exotic situations where there is dyadic depen-
dence in higher order moments, but no correlation). The arguments in Menzel (2017)
suggest that the weighted bootstrap of Janssen (1994) and Davezies et al. (2019) will
be inconsistent under degeneracy.

Menzel (2017) proposes several different bootstraps; what I sketch here is a sim-
plified version of his ‘BS-N’ procedure (adapted to the dyadic regression case). Let

- -
5f=—N_1jz_;§ijv §?=—N_1;§ij
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be estimates of the average dyadic score for ‘ego’ i and ‘alter’ j. Let

éij =S8ij — 5 —§;?
equal the residual for §;; after subtracting off these ego and alter means. Menzel
(2017) actually suggests subtracting off rescaled versions of §¢ and AG;? when forming
¢;j. Rescaling improves the accuracy of his procedure when dyadic correlation is,
in fact, absent. I omit this detail since describing it requires introducing substantial
additional notation. The stylized version sketched here will be conservative under
degeneracy (similar to the pigeonhole bootstrap).

Let { VI’} be a sequence of i.i.d. mean zero random weights with unit variance
(and unit thlrd moment as well). Let 11 AU it ~ be N indices drawn uniformly at
random (with replacement) from {1, ..., N}. For all (g’ ) dyads induced by the bth
such bootstrap sample construct the scores

§h =§ +§a,,+V1,V1,€bh, ]—1 _1&k:j+1,...,N
]

and compute their mean

5 N-1 N Sioip + S0
§b — Z IS
NTNWN-=1) ¢ , 2
Jj=lk=j+1
The variance of /N S‘I}(, across the b =1, ..., B bootstrap replications can be used

to construct an estimate of Q2 =V («/ NS N). Menzel’s (2017) preferred procedures
involve an additional “model selection” step, not described here, as well as pivotizing
using QFG = Qjk-BC-

4.6 Further reading and open questions

A special case of the Fafchamps and Gubert (2007) variance estimator was first
proposed by Holland and Leinhardt (1976) in the context of inference on net-
work densny, the equivalent of the dyadic mean py,, = E[Y]2] here (estimated by
Y = N(N 0 SN ji Yij). The Holland and Leinhardt (1976) variance estimate
was used with some regularity in empirical social network analysis in the 1980s and
1990s (cf., Wasserman and Faust, 1994). The reference distribution was assumed to
be normal, but no proof for this was available. Bickel et al. (2011) appear to be the
first to have shown asymptotic normality of v/ N (I_’ - /Lyu) under dyadic depen-
dence. The double projection argument used to produce the Sy = Viy + Voy + Ty
decomposition used above is implicit in their work. A similar decomposition was
used by Graham (2017) to show asymptotic normality of the Tetrad Logit estima-
tor, which is described further below. The bootstrap procedure of Menzel (2017) is
also based upon this decomposition. Tabord-Meehan (2018) demonstrates asymptotic



5 Policy analysis 155

normality of dyadic regression coefficients estimated by ordinary least squares. His
method of proof is very different from the argument outlined here.

Cameron and Miller (2014), Aronow et al. (2017) and Tabord-Meehan (2018)
provide further results on variance estimation for dyadic regression; each building
upon the proposal of Fafchamps and Gubert (2007).

Menzel (2017) and Davezies et al. (2019) provide large sample theory in some
generality — including for cases not covered here. Both these papers provide formal
results on inference using the bootstrap as well. The presentation here is based upon
Graham (2018a), a revised and expanded version of which appears as a chapter in
Graham and de Paula (2020).

When dyadic correlation is weak limit theory can be non-standard. Menzel (2017)
provides examples and discussion. Related issues arise in Graham et al. (2019), who
study nonparametric density and regression estimation with dyadic data. Developing
inference procedures with good properties across a range of (dyadic) data generating
processes remains largely open.

Open research problems include extending the material summarized here to ac-
commodate regressor endogeneity and settings where the number of regressors is
comparable to, or even exceeds, the number of agents (or dyads).

5 Policy analysis

One motivation for Tinbergen’s (1962) dyadic regression analysis was to evaluate
the effect of preferential trade agreements on export flows. Rose (2004) explores the
related question of whether membership in the General Agreement on Trade and Tar-
iffs (GATT) or its successor, the World Trade Organization (WTO), promoted trade
(see also Rose (2005)). Baldwin and Taglioni (2007) and Santos Silva and Tenreyro
(2010) use gravity models to assess whether common currency zones, such as the
Eurozone, promote trade. As with conventional regression analysis, a desire to assess
different programs or policies underlies many dyadic regression analyses.”'

While the logic and mechanics of program evaluation are well understood in
the context of single agent models (cf., Heckman and Vytlacil, 2007; Imbens and
Wooldridge, 2009), a comparable framework for causal reasoning is not, to my
knowledge, available in the dyadic setting considered here. In this section I make
a start at formulating such a framework. In doing so I will attempt to follow the nota-
tion and language of the standard single agent causal inference framework reviewed
in, for example, Imbens and Wooldridge (2009). What follows are some initial ideas
and results; much work remains to be done.

21 Other examples of recent attempts to reason about causal questions with dyadic data include Schwartz
and Sommers’ (2014) and Goodman’s (2017) analyses of whether Medcaid expansion states experienced
in-migration from neighboring states which chose to forgo the Affordable Care Act’s expansion of Med-
icaid and Mayda’s (2010) and Oretega and Peri’s (2013) studies of the relationship between immigration
entry tightness and cross-country migration.
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5.1 Dyadic potential response

Let W; e W ={wy,...,wg} and X; € X = {x1,...,x} be a finite set of ego and
alter policies. For example W might enumerate different export promotion policies
(e.g., tax subsidies or preferential credit schemes for exporting firms), while X might
enumerate different combinations of protectionist policies (e.g., tariff levels). The
goal is to understand how different counterfactual combinations of ego and alter pol-
icy pairs map into (distributions of) outcomes.

I begin with an assumption about the form of the potential response function for
(directed) dyad ij.

Assumption 1 (Dyadic Potential Response Function). For any ego-alter pairi, j € N
with i # j, the potential (directed) outcome associated with adopting the pair of
policies W; = w and X j = x is given by

Yij (w,x)=h(w,x,A;,Bj, Vij), xeX, we W (53)
. both i.i.d. sequences additionally inde-

with {(A;, Bi)}ien and {(Vij, Vji)}i’jeN’i<1
pendent of each other and h - W x X x A x B x V — Y a measurable function.

The ego and alter effects, respectively A; and B;, induce dependence across any
pair of potential outcomes whose corresponding dyads share at least one agent in
common. This implies a type structured “interference” between units, and hence a
violation of SUTVA (cf., Rosenbaum, 2007).

Since assignment to treatment is at the ‘ego’ or ‘alter’ level, setting X; = x and
W; = w shapes not just the realized outcome for dyad i, but also those of all other
dyads which include either agent i or agent j. It is because of its implications for de-
pendence across the rows and columns of [Y,- i (w, x)] that I label Assumption 1
an “assumption”. More than just notation is involved.

It is possible that Assumption 1 could be derived from a more primitive ex-
changeability type restriction; for example by viewing [Y,- 7 (w, x)]l.’j o as a jointly
exchangeable random array and appealing to the Aldous-Hoover Theorem. There
may be some deep subtleties involved in such an approach, so I prefer to maintain
(53) as an explicit assumption in this initial exploration.

I could have also written Y;; (w,x) =h (w, x,(1,00U;, (0, 1) Uy, V,-j) = h*(w, X,
Ui,U;,V; j) with U; = (A;, B;)'. Explicitly separating out an ‘ego’ and ‘alter’ effect,
however, is conceptually useful and also facilitates, as will be demonstrated by ex-
ample below, parametric modeling.

In some cases of interest the support of the ego and alter policies will coincide
(i.e., W = X). Following Santos Silva and Tenreyro (2010), for example, both X; and
W; might be indicators for Eurozone membership. This example implies the addi-
tional restriction that X; = W; for all i € N, since a country belongs to the Eurozone
in both their exporter (ego) and importer (alter) role. These special cases can be de-
duced from the more general results which follow.

i,jeN
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5.2 Average structural function (ASF)

Dyad-level treatment effects are defined in the usual way. The effect on i j’s outcome
of adopting policy pair (w’, x) vs. (w, x) is

Yij(w', x") = Yij(w, x).

As in the standard case, identification of such effects at the dyad-level is infeasi-
ble. This is because the econometrician only observes the outcome associated with
the policy pair actually adopted. Specifically, for each of N randomly sampled units
she observes the assigned or chosen ego and alter policies, {(W;, X,-)}lN: , and the
N (N — 1) realized (directed) outcomes {(Y;;, Y;i)} j» where

i<

v, L v (i, X;) (54)
equals (directed) dyad ij’s realized outcome. No counterfactual outcomes are ob-
served.

Although dyad-level treatment effects are not identified, averages of such effects
over agents and/or dyads are (under certain assumptions). Here I will focus on identi-
fying average treatment effect (ATE) type parameters. Consider the following thought
experiment: (i) draw an ego unit at random from the target population and exoge-
nously assign it policy W; = w, (ii) independently draw an alter unit at random and
assign it policy X ; = x. The (ex ante) expected outcome associated with this directed
dyad, so configured, is

m™SF (. ) Y B [¥is (. 1)] (55)

://[h(w,x,a,b, V) fa, (@) fB, (b) fv,, (v)dadbdv
"éf///ﬁ(w,x,a,b) A, (@) f3, (b)dadb,

d - d
where the second ° éf’ in (55) follows from defining & (w, x, a, b) éf Elh(w,x,a,b,

Via)] and Tpo (w.x) < E[h(w. x. A,. By)]. Note also that E[h(w. x.a.b. Vi)
|A1 =a, By =b] =E[h(w, x,a, b, V12)] by independence of Ay, By and Vip (As-
sumption 1).

Differences of the form m w, x’ ) —m”SF (w, x) measure the expected effects
of different combinations of policies on the directed dyadic outcome. If W; € {0, 1}
and X; € {0, 1} are both binary indicators for GATT/WHO membership, as in Rose
(2004), then the contrast

ASF (

m™SF (1, 1) — m”SF (0, 0) (56)

gives differences in export flows between a random pair of countries in the
GATT/WHO vs. non-GATT/WHO states of the world. This is an average treatment
effect (ATE) type parameter, adapted to the dyadic setting.
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The dyadic setting also raises new questions. For example the double difference
mASE (1, 1) = mASF 0, 1) = [mASF (1,00 — mASF (0,0) (57)

measures complementarity in a binary policy/treatment across the two agents in the
dyad.

Other estimands beside the ASF may be of interest. The difference of sample
means

1
7 2 [ (1. X5) =¥ (0.X))]
J#i
measures the average effect — for unit i alone — of adopting ego policy W; = 1 versus
W; = 0; the average is over the status quo distribution of alter polices. Additionally

averaging over ego units gives

%ﬁ ZZ [¥i; (1, X;) = 7i; (0, X)].

i j#i

This equals the average effect, across all units in the sample, of adopting ego policy
W; =1 versus W; = 0, again given the status quo distribution of alter policies. The
population counterparts of these two sample averages may also be of interest.

For the purposes of illustration, assume that W = X = {0, 1}. A parametric form
for Y;; (w, x) that will be helpful for both understanding extant empirical work and
interpreting some of the assumptions which follow is:

Yij(w,x)=a+wB+xy +wxéd+ A; + B; +V;. (58)
Response (58) implies that treatment effects are constant across units, for example,
Yij (1,0) — Y35 (0,0) = B,

which is constant in i € N. Under (58) we also have estimand (56) equaling 8+ y + 6
and (57) equal to 6.

The average structural function (ASF) estimand is a leading case and will be em-
phasized here. However, as I hope the brief sketch above makes clear, other estimands
merit exploration and, I conjecture, will involve interesting identification, estimation
and inference issues.

5.3 Identification under exogeneity

In order to identify the ASF I will assert the existence of the observable proxy vari-
ables, R; and S;, respectively for the ego and alter effects A; and B;. These proxy
variables will satisfy two key restrictions, the first of which is:
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Assumption 2 (Redundancy). For R; € R RIMR) 4 proxy variable for A;, and
S; € S CRIMS) 4 proxy variable for B;, we have that

IE[Yij (w9x)| Wi9Xj7Aj, Bj, Rl‘, Sj]I]E[Y,'j (w,x)| W,',X./',Al',Bj],

forany w e W and x € X.

Assumption 2 is a redundancy assumption of the type introduced by Wooldridge
(2005); it simply asserts that R; and S; have no predictive power (in the conditional
mean sense) for the dyadic potential outcome Y;;(w, x) conditional on the latent ego
and alter attributes A; and B;. Adapting Wooldridge’s (2005) example, it asserts that
ego and alter Armed Forces Qualification Test (AFQT) scores, R; and S}, do not pre-
dict Y;; conditional on the unobserved cognitive abilities, A; and B;. Assumption 2
is a weak requirement since we are free to conceptualize the latent attributes, A; and
Bj, such that R; and S; are clearly redundant.

Assumption 3 (Strict Exogeneity). The ij ego-alter treatment assignment (W;, X )
is independent of V;j conditional on the latent ego A; and alter B; effects:

VijJ_(W,',Xj)‘Aiza,Bij,aGA,bGB. (59)

While conditional independence assumptions feature prominently in the causal
inference literature, Assumption 3, which involves conditioning on unobservables,
has no clear analog in the standard program evaluation model. The closest analog of
this assumption I can think of is Chamberlain’s (1984) definition of strict exogeneity
of a time-varying regressor conditional on a latent (time-invariant) unit-specific effect
in the context of panel data. To see the parallel return to parametric potential response
function (58) and note that (54) and (59) imply that

E[Yij|W,',Xj,A,’,Bj]=06+Wi,3+Xj)/~|—Win8+Ai —|—Bj (60)
since Assumption 3 gives E[ Vi;| W;, X;, A;, Bj| =E[Vij| Ai, Bj] and E[ V| A;,
B;] = E[Vi;] by independence of {(A;, B)}Y, and {(Vij, Vﬁ)}i<j
IE[V,- j] = 0 is a normalization). Eq. (60) looks a lot like the definition of strict

exogeneity in Chamberlain (1984, Equation 1.2 on p. 1248). Eq. (60) implies, for
example, that

(setting

E[Yij — Yu — (Yij — Yu)| Wi, Wi, X, X0, Ai, A, Bj, Bi]
= (Wi — W) (X; — X1) 8,
such that “within-tetrad” variation identifies §. Similar to how within-group variation
in a strictly exogenous regressor identifies its corresponding coefficient in the panel

context.
Under Assumption 3 we have the density factorization

SVia, A, W1, By, x, (V12, a1, w1, b2, X2) = fyy1a,, w1, By, X, (V12| @1, w1, b2, X2)
X fa,,w, (a1, wr) f,,x, (b2, x2)
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=fVviplA,,B, (Vi2]at, by)
X fay,wy (@1, w1) fBy,x, (b2, x2)
= fvi, (V12) fa,,w, (a1, w1) fB,,x, (b2, x2)

with the first equality an implication of units 1 and 2 being independent random
draws, the second equality following from Assumption 3, and the third from inde-
pendence of {(A;, B))}\L; and {(Vi;, le-)}i<j (i.e., Assumption 1).

This factorization clarifies that the effect of Assumption 3 is to ensure that all
“endogeneity” in treatment choice is reflected in dependence between W; and A;
and/or B; and X ;. Conditional on these two latent variables, variation in treatment is
“idiosyncratic” or exogenous.

To deal with dependence between W; and A;, and B; and X ;, I make a familiar
selection of observables type assumption.

Assumption 4 (Conditional Independence). An ego’s (alter’s) treatment choice
varies independently of their latent effect A; (Bj) given the observed proxy R; (S;):

AiJ_Wi|R,-=r,reR§Rdim(R) (61)
Bi L Xi|Si=s,seSCRIMS, (62)

Assumption 4 is a standard one in the context of single agent program eval-
uation problems, asserting — for example — that A; and W; vary independently
within subpopulations homogenous in the proxy variable R;. Extensive discussions
of selection-on-observables type assumptions like these, including assessments of
their appropriateness in different settings of interest to empirical researchers, can be
found in Blundell and Powell (2003), Heckman and Vytlacil (2007), Imbens and
Wooldridge (2009) and Imbens and Rubin (2015). Their invocation here can raise
new issues, but, for the most part familiar approaches to reasoning apply; see Gra-
ham et al. (2018) for a related discussion.

Assumptions | to 4, plus an additional support condition described below, are
sufficient to show identification of the ASF. To develop the argument first let

q(w,x,r,s):E[Y,~j| Wi=w,X;=x,R =5s,5; :s] (63)

be the dyadic proxy variable regression (PVR). Under Assumptions | through 4 the
PVR relates to Y12 (w, x) = h (w, x, A1, B) as follows:
q(w,x,r,s) ZE[h(Wi,Xj,A,‘,Bj, sz)| Wi=w,Xj=x,R =r1_§; =S]
=E[E[h (Wi, X}, Ai, B}, Vi))
\Wi :w,Xj =x,A,-,Bj,R1- =r,Sj =S]
‘Wi :w,Xj =x,Ri :r,Sj =S]
Z]E[E[h (Wi,Xj,Ai, Bj, V,])| Wl‘ =w,Xj ZX,Ai, Bj]
|Wi =w,Xj =)C,R,' ZF,SJ' =S]
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=E[h (w,x, A1, Bj)|Wi=w,X;=x,R; =r,5; =s]
=//bl_z(w,x,a,b)fAm(a|r)f3\5(b|s)dadb

a
:]E[le(w,x)IRlzr,Szzs], (64)

where the first equality follows from Assumption | and Eq. (54), the second from
iterated expectations, the third from the redundancy condition (Assumption 2), the
fourth from Assumption 3, independence of {(A;, B}, and {(V;;, Vj;)},_. and

~ i<j
the definition of %, and the fifth from selection on observables (Assumption 4).
Eq. (64) gives the identification result

Er[Es[q (w,x,Ri,Sj)]]=//|://bﬁ(w,x,a,b) far (alr) fB|g(b|s)dadbi|
(65)
X fr(r) fs(s)drds

=//ﬁ(w,x,a,b) fa (a) fg (b)dadb
aJb

=E [le(w,x)]

=mSF (w, x).

Since g (w, x, r, s) is only identified at those points where fgiw (r|w) fs;x (s|x) >
0, while the integration in (65) is over R x S, we require a formal support condition:

def
S(w,x) = {r,s:fR‘W(r|w)fs|x(s|x)>0}:R><S. (66)
When W; and X; are discretely-valued, with a finite number of support points, as
assumed here, (66) can be expressed in a form similar to the overlap condition famil-
iar from the program evaluation literature (e.g., Heckman et al., 1997; Imbens and
Wooldridge, 2009).

Assumption 5 (Overlap). For (w, x) the ego-alter treatment combination of interest

Pw () px () >k >O0forall (r,s) e R xS

def d
where py, (1) g Pr(W; =w|R; =r) and p; (s) éf Pr(X; =x|S; =5).
We have shown.

Theorem 2. Under Assumptions I through 5 the ASF is identified by

m”SF (w, x) ://q (w,x,r,s) fr(r) fs (s)drds. 67)

I
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Theorem 2 shows that the ASF is identified by double marginal integration over
the dyadic proxy variable regression function. Double marginal integration also fea-
tures in Graham et al. (2018), in the context of identifying an average match function
(AMF), and Brown and Newey (1998), in their discussion of efficient expectation
estimation under independence restrictions. However the random array structure
present here is absent in both these examples, which accounts for many of the differ-
ences in underlying arguments.

5.4 Estimation of the average structural function

Let g (w, x,r,s; y) be a (flexibly) parametric model for the dyadic proxy variable
regression function. For example, if the outcome of interest is export flows, we might
specify that

qw,x,r,s;y)=exp(t(Q)y).

with Q; = (Wi/, X!.R], Si/)/ and ¢ (Q;) a finite (and pre-specified) set of basis func-
tions (preferably including interactions of terms in the treatment variables — W, X —
and proxy variables — R, S). We can estimate y use the Poisson dyadic regression
estimator described in Section 4. Proceeding in this way delivers an asymptotically
linear representation for v/N (7 — o) of

) 2 L (54(Qi Ui yo) + 5 (04, Uss
W(V—Vo)=—rolﬁ2{sl(Q Vo)zsl (Q VO)}+0,,(1) 68)

with U; = (A;, B;)', T'¢ the probability limit of the Hessian matrix associated with
the dyadic Poisson composite log-likelihood, and 5% (Q;, U;; o) and 5¢ (Q;, U;; yo)
as defined on page 145 (with Q; playing the role of X;).

With an estimate of y in hand, form the fitted values {q (w X, R;i, S y) }Kj and,
invoking Theorem 2, compute the analog estimate

N—1
/7 ASF (w. x: -1

)

q wv-stiv S]»);)"i_q(wv-x»ij Slvj;)
5 .

Mz

(69)
1

+

i=1 j=i

To present the limit distribution of m
the proxy variable regression function:

nASE (w, x; 7) I impose a regularity condition on

Assumption 6. (i) y € C C RY™Y) yith C compact, (ii) q (w,x,r,s;y)istwice con-
tinuously differentiable in y, and (iii) the expectations E[lq (w,x, Ry, S2;7) +q(w,

9g(w,x,R1,8;7) | 9g(w.x,Rp,S157) Pq(w.x.R1.5:y)
%, R, S p)l] B[ 20sbusin) o dawck | and E[|Fartpsin o
9%q(w.x, Ry, S13y)
W F areﬁnlte.

Under this assumption we have the following Lemma.
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Lemma 1 (ASF Estimation). Under Assumption 6, with y a </ N consistent estimate
of yo, we have that

N
2
i=1

+ Mo (w,x)v'N (7 — v0) +0p (1)

where
q¢ (w,x,R1;y)+g% (w, x,S1;7)
Yo (w, x, Ry, S1; ) = > —m™SF (w, x; y)
1_ [0 ,X, Ry, S2; bl ,X, Ry, S1;
Mo (w.x) =& q(w,x, Ry, $ 7/0)+ g (w,x, Ra, S15 y0)
2 ay’ ay’

with
q°(w,x,r;y) =Es[q (w,x,r, 5 y)]
q“ (w,x,s;7) =Eg[q w,x,R,s;7)].

Proof. The result follows from Assumption 6 and an application of Lemma 1 in
Appendix A. O

Lemma | and Eq. (68) yields an asymptotically linear representation for
VN (A (w, x; 7) = mASE (w, x5 y0)) of

VN (n%ASF (w,x;7) = m™F (w, x; )/0))

N
2
i=1

— Mo (w, x) !
5 ii{ff(QhUi? vo) +57 (Qi Ui VO)}
N5 ?

Under correct (enough) specification of the composite likelihood, which will typi-
cally follow if the parametric form of the PVR function is itself correctly specified,
both 57 (Q1, U1; yo) and 5y (Q1, U1; yp) will be conditional mean zero given Q1,
hence the first and second terms in (71) will be uncorrelated with each other such
that a CLT will imply a limit distribution of

«/ﬁ(n%ASF (w, x37) =m™F (w, x; )’0))

~1
2N (0,430 (w, x) + 4Mo (w, ) (rgz;‘ro) Mo (w,x)/>
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with Eo (w, ) =V (Yo (w, x, Ri, 15 90)) and £y =V (
The first term in the asymptotic variance reflects the econometrician’s imperfect
knowledge of the distribution of the proxy variables (le, Slf)/. The second term re-
flects the asymptotic penalty associated with not knowing the conditional distribution
of Y1, given Wy, X2, Ry, S>. See Graham (2011) and Graham et al. (2018) for more
expansive discussions in related contexts (see also Chamberlain (1992)).
In order to conduct inference an asymptotic variance estimate is required. Esti-

if(Qian§V0)+§?(inUi§)/0))
5 .

-1
mation of covariance matrix V (\/ﬁ ()? - y0)> = (F 621_1 F()) can proceed using
one of the methods described in Section 4. The Eg (w, x) term may be estimated by

N
, 1 X . R
E(w,x): N;w(u)’xvRl’Sl;y)l/f(wsstls Sl;y)/

where 0/ (w, x. Ri. i1 7) = L Zjii‘I(W,X,Ri,Sji)’);‘l(w,x,Rj’SiZV) — A (), x: 7).
The Jacobian, My (w, x), is naturally estimated by

5 N-1
My (w, x) = NN-D

i=1 j=i+l

i 1| 9q (w,x, Ri, Sj;7) N dg (w, x, R}, Si; 7)

, 2 ay’ ay’ ’
In practice, for reasons analogous to those discussed in Section 4, it may be prefer-
able to replace the estimate of X with one for Q2 (as defined in Eq. (40)) and use

a “Fafchampfs and Gubert” type estimate of V (WzﬁASF (w, x; yo)) in place of

@(w,x).

5.5 Further reading and open questions

I am aware of no extant work on causal inference in the setting considered here. There
is a large, and rapidly growing, literature on causal inference and interference, some
of which makes connections to networks (e.g., Athey et al., 2018); VanderWeele and
An (2013) provide a review of some relevant research.

The approach to estimation outlined above builds upon the dyadic regression ma-
terial already introduced. A natural extension would replace the parametric proxy
variable regression function estimate with a non-parametric one (perhaps estimated
using machine learning procedures). Inverse probability weighting (IPW) type es-
timators are also easily constructed (cf., Graham et al., 2018). I conjecture that
augmented inverse probability weighting estimators (AIPW), exhibiting double ro-
bustness type properties, could also be constructed. The maximal asymptotic preci-
sion with which mASF (w, x; y9) may be estimated under Assumptions 1 through 5 is
also unknown. This semiparametric efficiency bound calculation, as in other network
problems with likelihoods that don’t easily factor into independent components, does
not appear to be straightforward.
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6 Incorporating unobserved heterogeneity

In its natural to associate the agent-specific U; and U; terms appearing in the Crane
and Towsner (2018) representation result for X-exchangeable networks with unob-

served correlated heterogeneity. In Section 4 I introduced methods for parametric

d
estimation of the dyadic regression function ¢ (x, x”) 24 E[Y;| Xi=x,X; =x"].

The relationship between g (x,x’ ) and the graphon h (x,x’, u,u, v) depends, of
course, on the dependence structure between X; and U;. Assumptions about this
dependence structure played a prominent role in identifying the average structural
function (ASF) in Section 5. In both Sections 4 and 5, however, the focus was on
direct modeling of the conditional mean of Y;; given observed covariates.

In this section I wish to explore the advantages of a modeling approach which
directly specifies a parametric form for the graphon. This idea, at least implicitly,
goes back to the work of Holland and Leinhardt (1981) and van Duijn et al. (2004).

The analysis in Sections 4 and 5 requires that the researcher directly specify the
correct parametric form of the dyadic regression function. In contrast, the exact struc-
ture of (conditional) dependence across dyads sharing agents in common was left
unspecified. To understand how such dependence might arise, it is useful to spec-
ify a structural correlated random effects model, analogous to those familiar from
single-agent discrete choice panel data settings (e.g., Chamberlain, 1980, 1984).

6.1 A parametric dyadic potential response function

For the purposes of illustration, I will focus on modeling a directed binary outcome
variable. The generalization to non-binary outcomes is straightforward. Refer to the
dyadic potential response function introduced in Assumption 1. Consider the follow-
ing parametric form for this function

Y12 (wi, x2) = 1(¢€ (wy)’ B + 1% (x2)' B§ + @ (w1, x2) vo + A1 + B2 + Vi2 > 0)
(72)

=h(wy,x2, A1, By, Vip)

with

¢

and independently distributed across dyads. As in Section 5, X; and W; correspond
to the chosen ego and alter treatments; A; and B; are unobserved ego and alter het-
erogeneity, which may be correlated with these treatment choices, and R; and §; are
proxy variables (recall that Q; = (Wi/, X/, R, Slf)/). The vectors ¢ (wy), r* (x2) and
o (w1, x2) consist of known basis functions in the underlying treatment variables. In
the case where both W; and X ; are binary we would set ¢ (w1) = wy, t* (x2) = x2
and w (w1, xX2) = wixo.

V12, V21)|Ql,Qz,Al,Bl,Az,Bz’“N(( 8 >< ! i )) (73)
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Next posit the correlated random effects specification for the joint distribution of
the ego and alter heterogeneity

. e e N/ se 2
YW X Ry s~ (G0 RO ) [ onpoags ) gy
B; ag + k7 (84 POACE op
with k¢ (R;) and k“ (S;) vectors of known functions of the proxy variables. Note that
(72) and (74) jointly imply the selection on observables, Assumption 4 introduced
earlier. Redundancy and strict exogeneity, respectively Assumptions 2 and 3, also

hold in this set-up.
Averaging over A; and B; gives a dyadic proxy variable regression function of

a (Wi, X, Ri, Sy m0) = @ (Tjjmo) (75)
2 2\—1/2 e a e\ a\/ ’ e\ a)’ !
for o = (1 toyt+ UB) (“0 + o, (ﬂo) J (:30) » Yor (30) , (50) ) and
U
T;; = (l,te (W), t¢ (Xj) ,a)(W,-,Xj)/,ke (Ry), k¢ (Sj)) .

It is possible to estimate no along the lines outlined in Section 4 above. Alter-
natively one could attempt to directly maximize the integrated likelihood implied
by (72), (73) and (74). This would be computationally non-trivial since the integral
does not easily factor. van Duijn et al. (2004) and Zijlstra et al. (2009) develop this
approach using Markov Chain Monte Carlo (MCMC) methods.

6.2 Triad probit: a correlated random effects estimator

An intermediate approach, which is more efficient than the basic dyadic regression
estimator introduced earlier, and additionally recovers more features of the graph
generation process, is what I will call triad probit. Triad probit is also a com-
posite likelihood estimator. Instead of modeling the dyadic outcome, Y12| Q1, Q2,
marginally however, it is composed of component likelihoods for the joint outcome
(Y12, Y21, Y13, Y31)| Q1, Q2, Q3. That is I model the outcome configuration associ-
ated with a pair-of-dyads sharing one agent in common. An overall criterion function
is constructed by summing over the component log-likelihoods, so constructed, for
all 3(1;/ ) pairs-of-dyads sharing one agent in common.””

The probability of the event Y1> = y12, Y21 = y21, Y13 = y13, Y31 = ¥31 given the
parameters and regressors is

Pr (Y12 = y12, Y21 = y21, Y13 = y13, Y31 = 311 Q1, Q2. 03) (76)

=[] [ [ ecima
A JAy JA;3 J Az

22 This approach is related to the pairwise likelihood estimator for models with crossed random effects
discussed by Bellio and Varin (2005) and Cattelan and Varin (2013).
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with ¢4 (#| ¥) the density of a tetra-variate normal distribution with mean zero and
covariance matrix X. The intervals of integration are given by

(—OO, T/j'?o) if y;j =1

Ap=1 N |
I:Tjjn()a OO) if y;; =0

s

with the covariance matrix, which is in correlation form (a scale normalization), tak-
ing the form

2

{+2posop 94 pPOATE
l+oi+0;  l+oi+of  l+oi+oj
> ZE(Q',UA,OB,,O)Z 1+<7A2+<TB I+os+og I+o+og
94 POATB 1 ¢+2poaop
1+ai+a§ 1+a§+a§ 1+a§+a§
POACE op ¢+2posop 1

I+oi+05  l4oi+op  I+oi+o}

The integral (76) does not have a closed form expression. Fortunately a large
econometrics and statistics literature suggest various methods for its numerical eval-
uation; see, for example, Keane (1994) and Chib and Greenberg (1998).

Let IT23 (0) equal the logarithm of (76) with 6 = (n’, L,04,08, p)/. To induce
symmetry in the criterion function summands I form the average

1
ik 0) =5 [I;f,.k ©0) + 1% 0) + 17, (9)] .

The triad probit estimate éTp of 6 is the maximizer of the sum of the /; i (9) kernels
over all (g’ ) triads in the network:

Lv@=0)"Y i ®. (77)

i<j<k

Note that (4) sums over all 3(2’ ) pairs-of-dyads sharing one agent in common. It does

this by summing over all (1;/ ) triads in the network and, for each such triad, summing
over the three pairs-of-dyads sharing an agent in common that can be constructed
from it.

The criterion (77) is not a U-process-minimizer, although, as in the other contexts
introduced above, it shares similarities with one. The results of Honoré and Powell
(1994) do not immediately characterize the asymptotic sampling properties of b1p.
Nevertheless arguments similar to those outlined in Sections 4 and 5 above can be

applied to also analyze Orp.
-1
A quick outline of these arguments goes as follows. Let Sy (6) = (1;/ )
y 2.
Zi<j<k sijk (0) with s;x (0) = 31’39(0). Also define I'o = E [aalgge(,g)] and, as ear-
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lier, ¥, =E [sili2i3s}l i js] to be the covariance of s;,;,i; and s}, j, j; when they share
g =0,1,2,3 indices in common.
Calculation then gives

18 6
V(WSN (9)) =98+~ (% - 23 + ST (23 +3%1) (78)

which suggests, under regularity conditions, the limiting distribution
VN (éTp — 90) 2N (o, 91“0—1211“0—1) . (79)
Associated with the triad probit is a proxy variable regression function estimate of
q (Wi, X, Ri,Sj; irp) = @ (E;ﬁTP)

from which an estimate of the ASF (or differences thereof) can be directly constructed
according to Eq. (69). This corresponds (essentially) to a dyadic generalization of
the average partial effect (APE) estimator introduced by Chamberlain (1984) in the
context of a correlated random effects probit panel data model.

6.3 Fixed effects approaches

The models introduced above, while allowing for dependence in outcomes across
dyads sharing agents in common, restrict its structure. In contrast, Graham (2017)
provides a fixed effects analysis of a model where a undirected binary dyadic outcome
is determined according to

Y;j =1([r X +1(X)] Bo+o(Xi. X;) o+ Ai+A;— Vi 50), (80)

with V;; standard logistic and independent across dyads. Specifically he studies iden-
tification and estimation of yy, leaving the joint distribution of X; and A; unrestricted
(without restrictions on this distribution Sy is unidentified (cf., Hausman and Taylor,
1981; Arellano and Bover, 1995). The parameter of interest, yp, indexes the strength
of any homophilous sorting on the observables agent attributes in X;, while {A; }lN: |
indexes unobserved degree-heterogeneity. Since real world network degree distribu-
tions often have high variance (and in particular fat right tails), incorporating degree
heterogeneity may be important in practice (Barabdsi and Albert, 1999; Barabdsi and
Bonabau, 2003). Graham (2017) shows how failing to accommodate degree hetero-
geneity may attenuate measured homophily (i.e., bias estimates of yp).

Conditional on X = (X1, ..., Xy) and A = (A4, ..., Ay)’, the likelihood for the
adjacency matrix D factors into (g] ) conditionally independent components. Absorb-
ing ¢ (X;)’ Bo into the individual effect A;, the model consists of the finite dimensional
parameter of interest, yp, and the N incidental heterogeneity parameters, Ag. Let
K = dim (yp); in this model the number of parameters, K + N, is a function of the
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order of the network. Since this number grows with N, the model is non-standard
(cf., Holland and Leinhardt, 1981; Chatterjee et al., 2011).

Graham (2017) analyzes the large network properties of two estimates of y. The
first estimate, leveraging the implicit “large-N, large-T” structure of dense networks,
is the joint maximum-likelihood one, which also simultaneously estimates the inci-
dental parameters Ag = (Ao1, ..., Agn) . The second exploits the exponential family
structure of the model and conditions on a sufficient statistic for Ag. Both estimates
have antecedents in the literature on panel data.

Joint estimators

Let T;; be an N x 1 vector with a one in the i th and j'" elements and zeros elsewhere.
The joint-MLE coincides with the logit fit of Y;; onto w (X i X j) and T;; forall i <
j.2* Although this estimator involves K + N parameters, it is based upon a criterion
function with ()) = O (N?) summands. This feature is similar to joint maximum
likelihood estimation in a panel data setting where both N and T are allowed to grow.
Here each of N agents make N — 1 linking decisions; the latter is analogous to “7”
in the “large-N, large-T” panel data setting. As the number of agents in the network
grows, so too does the number of link decisions observed for each of them. This
feature of the model allows for consistent estimation of both yg and Ay, although,
as in the panel data case, there is a bias in the limit distribution of 7 which must
be corrected in order to undertake asymptotically valid inference (Hahn and Newey,
2004; Arellano and Hahn, 2007).2*

Graham’s (2017) assumptions imply that the limiting network will be dense. Yan
et al. (2018) show that it is possible to weaken his assumptions somewhat, but it ap-
pears impossible to accommodate asymptotic sequences with sparse limits. In Monte
Carlo experiments the joint MLE works poorly in networks with low density. Re-
searchers are advised to be cautious when applying this estimator to low density
networks.

Dzemski (2019) and Yan et al. (2018) study joint estimation of a directed version
of (80). The former paper presents a method of testing for reciprocity in links as well
as for neglected transitivity.

Conditional estimators

Under the logistic assumption, the likelihood associated with (80) is a member of the
exponential family. It turns out that the degree sequence of the network is a sufficient
statistic for Ag (Snijders, 2002). A conditional maximum likelihood estimator could
be constructed, however, unlike in the panel case considered by Chamberlain (1980),
the likelihood does not nicely factor into independent components. It would also be

23 Graham (2017) outlines a more convenient nested-fixed-point approach to estimation based upon an
insight due to Chatterjee et al. (2011).

24 A technical difficultly involving the inverse Hessian arises in the network setting. A similar challenge
is also present in panel data models with time effects (Fernandez-Val and Weidner, 2016).
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non-trivial to evaluate and maximize the conditional likelihood (cf., Blitzstein and
Diaconis, 2011).

Graham (2017) instead builds a criterion involving tetrads — quadruples of agents.
A tetrad is the smallest subgraph that is not completely determined by its degree
sequence. For example, there are three isomorphisms of the two edge graphlet —
on four vertices, each with an identical subgraph degree sequence of (1,1,1,1)".
If y9 = 0, then conditional on the event that a randomly sampled tetrad takes one
of these three forms, any one of them occurs with an equal probability of one third.
Deviations from this benchmark are possible when yy # 0, depending on the configu-
ration of covariates across agents in the sampled tetrad. Graham’s (2017) conditional
estimator, which he calls tetrad logit, is based upon this insight.

The large network properties of the tetrad logit estimate of y may be derived in a
way roughly analogous to that of the dyadic regression estimators introduced above.
The analysis in Graham (2017), however, allows for sequences of graphs which are
sparse in the limit. This affects the rate-of-convergence of the tetrad logit estimate.
Conveniently its limit distribution remains normal under both dense and sparse se-
quences.

Jochmans (2018) provides a conditional analysis, including several worked em-
pirical examples, of a directed analog of tetrad logit. Nadler (2015) proposes a related
estimator for bipartite networks and presents an empirical application.

6.4 Further reading and open questions

Varin et al. (201 1) survey the statistics literature on composite likelihoods. A standard
reference on U-Process minimizers is Honoré and Powell (1994). Many of the results
presented in this section, as well as the previous ones, utilize ideas coming from the
theory of composite likelihood and U-Process minimizers. Connections to panel data
have also featured prominently; here I recommend Chamberlain (1980), Chamberlain
(1984), Arellano and Honoré (2001), and Arellano and Hahn (2007).

The triad probit estimator introduced above has a rate of convergence equal to

V/N. In the simplest setup the tetrad logit estimator has a faster \/@ rate of con-
vergence. This is peculiar because, invoking intuitions familiar from panel data, one
would generally expect an estimate based upon an integrated/random effects likeli-
hood to be more efficient than one based upon a conditional/fixed effects likelihood.
Here the two estimators have different rates of convergence with, perhaps, a ranking
reverse of what one might expect a priori.

van Duijn et al. (2004) use MCMC methods to (essentially) maximize the network
likelihood implied by (72), (73) and (74). Their approach to inference is Bayesian;
it would be interesting to formally study the maximum integrated likelihood estima-
tor proper (as opposed to the triad probit composite likelihood estimator introduced
here). What is the rate of convergence associated with the true random effects max-
imum likelihood estimator (MLE)? Likewise, tetrad logit, while inspired by condi-
tional likelihood ideas, is not a conditional MLE (it is akin to a conditional composite
MLE). Graham (2017) describes the conditional MLE, but does not formally analyze
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it. Such a formal analysis could be insightful. More generally we know very little
about efficiency in even the simplest of network problems.

The introduction of heterogeneity in this section is restrictive in nature. It al-
lows for what Graham (2017) calls degree heterogeneity. Methods for incorporating
assortative matching on latent agent-specific attributes would also be useful. For in-
spiration see, for example, Krivitsky et al. (2009). Recent ideas from panel data may
be useful here too; especially the work on discrete heterogeneity done by Bonhomme
and Manresa (2015). Ideas from the stochastic block literature — which is not sur-
veyed in this chapter — might also be useful for incorporating richer heterogeneity
structure into econometric models for dyadic outcomes.

7 Asymptotic distribution theory for network statistics

Wasserman and Faust (1994) exposit a large post World War 1II literature on the
computation and interpretation of different statistics of the adjacency matrix. Re-
searchers routinely report statistics like reciprocity, transitivity, moments of the de-
gree sequence, and diameter when presenting real world network data. Measures of
statistical uncertainty almost never accompany these reports. The leading approach to
assessing whether a reported network statistic is unusual is to informally compare it
with its expected value under an Erdos-Renyi null or, alternatively, a reference sam-
ple of real world networks (e.g., Milo et al., 2002; Newman, 2010; Graham, 2015).>
Informal simulation-based approaches to “inference” abound.

Large network approaches to hypothesis testing only recently emerged (e.g.,
Bobollas et al., 2007; Picard et al., 2008; Bickel et al., 2011). This is currently an
active research area (e.g., Gao and Lafferty, 2017; Green and Shalizi, 2017; Menzel,
2017), with many open questions. To be fair, work on the distributional proper-
ties of network statistics under specific graph generation processes, generally the
Erdos-Renyi one or close variants, was undertaken earlier. This work arose largely in
response to the seminal papers by Holland and Leinhardt (1970, 1976). Examples in-
clude the work of Frank (1979; 1980; 1988), Wasserman (1977) and Nowicki (1991).
The last reference is a useful survey of such analyses.

This section presents results on the large network distribution of induced subgraph
frequencies (and various statistics constructed from them). I begin, in Subsection
7.1, with a detailed analysis of triad counts and their application to inference on the
transitivity index or global clustering coefficient (e.g., Kolaczyk, 2009, p. 96). This
is a classic, practically important, and pedagogically valuable, example. Results on
counts of trees and cycles of any order are available in the Appendix. In Subsection
7.2, 1 turn to moments of the degree distribution, an area of intense focus in applied
work (e.g., Barabasi and Bonabau, 2003; Atalay et al., 2011; Acemoglu et al., 2012).

25 Blitzstein and Diaconis (2011) present an elegant approach based on comparing statistics of the net-
work in hand to those of the reference set of all graphs with the same degree sequence (i.e., a S-model
null).
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Not all common network statistics are covered by the results presented in this
section. Statistics such as diameter and average path length, for example, have, to my
knowledge, unknown sampling properties. Subsection 7.3 discusses open questions.

The work surveyed in this section dates to the papers by Holland and Lein-
hardt (1970, 1976). More recent contributions, generally by statisticians, were often
motivated by examples from computational biology (e.g., Picard et al., 2008). An
especially important contribution is the paper by Bickel et al. (2011). This section
draws heavily from the work by Bickel and coauthors. Related ideas were used in
the discussion of dyadic regression in Section 4. Recent work on strategic models
of network formation, where econometricians play the leading role, arose separately.
However, in Section 8 I argue that ideas from research on subgraph counts could
be valuable there as well. Specifically for structural estimation of strategic network
formation models.

The results in this section are based on the following hypothetical repeated sam-
pling experiment. Let G, y be an infinite exchangeable random graph of interest.
The network in hand, Gy, is the one induced by a random sample of N vertices
from G, n. Let hy (4, v) denote the Aldous-Hoover graphon characterizing the in-
finite graph G, v from which the econometrician samples N agents independently
at random. Note I suppress dependence of this graphon on the mixing parameter, «,
since I seek to conduct inference conditional on it (i.e., conditional on the empirical
distribution of [D"J']i,jeN,i<j)'

Using the observed network, Gy, we construct the statistic 7y (Gy). The sam-
pling distribution of this statistic is the one induced by repeated sampling of N agents
from the underlying infinite graph G y. To derive a limit distribution I assume there
is a sequence of infinite random graphs {Goo, N} —indexed by N — such that

h (u,v) = pyw (u, v)

with py (possibly) approaching zero as N — oo. In this way I pair a sequence of
increasingly larger “sampled” networks with a corresponding sequence of infinite
networks that are allowed to become increasingly sparser. With this set-up we can
study the distribution of 7y (G y), appropriately scaled, as N — oo.

As noted earlier, the above thought experiment does not mirror how empirical
networks are constructed in practice. Typically one of two cases obtains. In the first,
the network under study really is a very large graph (e.g., the Facebook graph) and
the econometrician really does sample from it. However, due to spareness, sampling
is rarely conducted as described above. Instead snowball sampling, edge sampling,
path sampling etc. are typically used (Crane, 2018). Understanding how to consis-
tently estimate network statistics and their sampling distributions under these more
exotic data collection schemes is an interesting topic for future research. In the second
case the econometrician works with the complete graph on some finite population of
vertices. In these cases the idea of sampling from an infinite graph is a thought exper-
iment used to get results that are hopefully useful in practice. It is this latter, rather
commonplace case, which I have in mind here.
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There is a subtlety in this second case, already touched upon in Section 3 in
the context of my discussion of the Aldous-Hoover Theorem. A jointly exchange-
able random graph with a finite number of agents need not have a probability law
with a conditionally independent dyad (CID) structure. The pattern of dependence
across links in such a network may be more complicated than that implied by the
Aldous-Hoover representation. I conjecture, by speculative extrapolation based upon
the example introduced in Section 3, that this is especially the case when agents form
links strategically. We know, however, that, for N large enough, joint exchangeabil-
ity will deliver a probability law for the network that is of the Aldous-Hoover form.
This suggests that, to derive limit theory, it is reasonable to proceed in the way I do
here; but there are missing steps in the argument. Menzel (2016) represents the only
attempt [ am aware of to struggle with these issues in a disciplined way. A more rig-
orous pairing of the game theoretic models of network formation of interest to many
economists, with the theory of graph limits would be a high priority topic for future
research.

7.1 Large network estimation of the transitivity index

In the social sciences, hypothesis formulation often involves graphlet counts (e.g.,
Holland and Leinhardt, 1970; Bearman et al., 2004; Choi and Wu, 2009; Jackson et
al., 2012; Isakov et al., 201 9).2(’ Graphlet counts are also used to construct important
network statistics like the transitivity index. It is this last statistic that is studied in
this subsection.

After introducing some notation and definitions, I apply the basic approach out-
lined by Bhattacharya and Bickel (2015, Proposition 6) to calculate variance expres-
sions for induced subgraph counts of two-stars (/\) and triangles (/). While this
is a relatively straightforward extension, it does require some carefully constructed
notation.”” Asymptotic normality of these counts, appropriately scaled, follows from
their results. An analysis of transitivity in the Nyakatoke risk-sharing network studied
by De Weerdt (2004) illustrates the practical application of these ideas.

A special case of a CID model is the Erdos-Renyi graph generation process (i.e.,
h(u,v) = p for some 0 < p < 1 and all (u, v) € [0, 1]®). The behavior of subgraph
counts under this GGP were studied by Nowicki and co-authors in the late 1980s
and early 1990s (Nowicki and Wierman, 1988; Janson and Nowicki, 1991; Nowicki,
1991). It turns out that this case exhibits a form of degeneracy. Specifically, the lead-
ing terms in the variance expressions presented below are identically zero under the

26 In practice it is easier to derive results for homomorphism frequencies and, not coincidentally, the
theory of graph limits generally works with homomorphisms.

27 One could even argue that these expressions are already implicit in Holland and Leinhardt (1976), al-
though they did not explore the properties of their expressions under sparse versus dense graph sequences,
nor did they analyze rates of convergence. Indeed, Wasserman and Faust (1994, p. 580), referring to the
covariance calculations of Holland and Leinhardt (1976), comment that they “can be time-consuming to
calculate (and maybe even difficult to comprehend)”.

I
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Erdos-Renyi graph generation process. Subgraph frequencies remain asymptotically
normal in this case, but with a faster rate of convergence. A separate treatment of this
case is provided below.

Notation and estimation
Recall from Section 3 that the induced subgraph frequency of S in Gy is

Py (8) =

S Y 1526 i) Q)
(M liso )1, &7
Under the maintained sampling scheme it is easy to see that (81) is an unbiased
estimate of P (S) = ting (S, h), the “population” induced subgraph density.

Consider the two-star (/\) and triangle (/) triad configurations. Applying (81)
gives the estimates

-11
Py (M) =(§]) 13 Z [Diyi, Diyis (1 — Diyiy) 4+ Diyiy (1 — Diyiz) Diniy, (82)

i3eCs n
+ (1 - Diliz) Di1i3Di2i3]
-1
Py (A) =(§/) Z D, i, Dy iy Diyis. (83)
izeCs n

From (82) and (83) we can construct an estimate of the transitivity index or global
clustering coefficient:

TIx — 3 x (# of triangles) _ Py (M) _On (D)
N= (# of two-stars) + 3 x (# of triangles) PN (A +Py(A) On (M)
(84)

Under an Erdds-Renyi graph generation process it is easy to show that (84) should
be close to the density of the network (e.g., Graham, 2015). Gao and Lafferty (2017)
develop a test based on this idea. If, suitably normalized, the limit distribution of
the vector (Py (/\), Py (/\)) can be characterized, then delta methods can be used
to conduct large network inference on transitivity. This idea is developed in detail
below.

Distribution theory for induced subgraph counts may also be useful for structural
model estimation via the method of (simulated) minimum distance. In this approach
model parameters are estimated by matching model-implied values of subgraph
counts with their empirical counterparts. Sampling uncertainty in such estimates,
stems from the corresponding uncertainty about the reduced form subgraph counts
being matched. This idea is developed more completely in Section 8.
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Graphlet stitchings
In developing an interpretable expression for the variance of graphlet counts, it is
helpful to introduce something I will call a graphlet stitching.”®

Let R and S be two p'" order subgraphs of interest to the econometrician. Fur-
thermore, leti, and j, be two p-tuples drawn independently at random from C,, y (as
defined in Section 3.5 above). The (scaled) covariance of the events “G y [ip] is iso-
morphic to R” and “Gy [j ,,] is isomorphic to S”, when there are g integers/vertices
common toi, = {i1,iz,....ip} and j, = {j1. j2. ..., jp}. is

24 (R, S)=E(Wg.rs)— P (R)P(S) (89)
where P (R) is the induced subgraph density defined in Eq. (11) and

d

by

fE[1(R=Gyi,])1(S=Gwiy])]

B (Wq,R,S) liso (R)| |iso (S)|

(86)

Here W, g, s is notation for a set of what I call graphlet stitchings. In order to under-
stand the structure of & (Wq,s, R) further we need a formal definition.

Definition 5 (Graphlet Stitching). Let W, g s be the graph union of R and S, labeled
isomorphisms of two graphlets of interest, if

D V(R)SV(G)and V(S) S V(G);

@{i) [V (R)| =1V (S)| = p vertices each;

@ii) [V (R) NV (S)| = ¢ vertices in common,;

(iv) identical structure across all vertices in common (i.e., (i, j) € E(R) < (i, j) €
EW®)Vi,jeV(R)NV(S)),

then W, g s is a graphlet stitching of R and S.

Next define the set of all feasible stitchings of R and S which satisfy Definition 5
as Wy s,r. When R and S belong to the same isomorphism class write W, s s =
Wy.s.

Requirement (iv) of Definition 5 is constraining. It implies, for example, that
some pairs of labeled two-stars cannot be stitched together. For example R =
({1,2,3},{(1,2),(1,3)}) and S = ({1,2,4},{(1,4),(2,4)}) cannot be logically
stitched together because the (1,2) edge is present in R but not S. This violates
requirement (iv) of Definition 5. Note also that the set /,; s g may contain elements
which are isomorphic to one another.

28 After completing the initial draft of this Chapter I discovered independent work by Green and Shalizi
(2017) that develops a closely related concept which they call “merged copy sets”. Graphlet stitchings, as
I define them, are more suited to my specific needs; although both approaches lead to the same answer in
the end. The basic idea is already implicit in Bhattacharya and Bickel (2015) (and really even Holland and
Leinhardt (1976)). Essentially the same idea is also used in Graham (2017) to derive large network theory
for Tetrad Logit.
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For simplicity consider the vertices 1,2,...,p,p+1,...,2p —¢q in Gn2If
R, defined on vertices 1,2, ..., p, is isomorphic to the subgraph of Gy induced by
vertices {1, ..., p} and S, defined on vertices p —q, ..., 2p — g, is isomorphic to the
subgraph of Gy induced by vertices {p — g, ...2p — g}, then it must be the case that
the union of these two induced subgraphs is an element of W, s . This gives the
equality

Z Pr(W:GN[{1,...,p}]UGN[{p—q,...,Zp—q}])

E Wy.s.r) = liso (R)] liso (S)|

WEWq,sz
&7)

Note that the graph union of Gy [{l, e, p}] and Gy [{p —q,...,2p— q}] may
differ from the subgraph induced by the union of the two overlapping vertex sets:

GN[{1,...,p}]UGN[{p—q,...,2p—q}];éGN[{l,...,2p—q}].

This is because the union of Gy [{l,..., p}] and Gy [{p —q.....2p —q}] will
not include any edges between {1,..., p —q — 1}, the vertices in R alone, and
{p+1,...,2p — g}, the vertices in S alone, while Gy [{1,...,2p — q}] may. By
exchangeability the right-hand-side of (87) is the same for any vertex sets i, =
it iz, ....ip} and j, = {ji1. j2..... jp} sharing, as is implicitly assumed in what
follows, g vertices in common.

To check whether R = Gy [i,] and S = Gy [j,] we therefore check whether
Gn [i p] UGn [J p] coincides with a particular (labeled) graphlet stitching of R and S.
Doing so, in turn, requires us to check for the presence or absence of only p (p — 1) —
(g) potential edges. The presence or absence of the (p — g)> possible edges from
the vertices unique to R to those unique to S is immaterial. Eq. (86) gives neither
an induced or partial subgraph frequency, but what I will call a graphlet stitching

frequency.

Calculating graphlet stitching frequencies

To understand how to calculate graphlet stitching frequencies in practice it is helpful
to work through a few examples. Fig. 5 shows all the elements of W, » on vertex
set {1,2,3,4,5}, with vertex 1 being the vertex in common. The top row shows all
isomorphisms of /A on vertices {1, 4, 5}, while the left-most column shows all such
isomorphisms on vertices {1, 2, 3}. The nine figures in the corresponding grid show
all the associated graphlet stitchings.

A more complicated example is provided by W,  , which is shown in Fig. 6.
The format of the figure is the same as that of Fig. 5. The two vertices in common are
1 and 2. An interesting feature of this example is that not all graphlet stitchings are
feasible.

29 Since G n is induced by a random sample of vertices, vertices 1,2,..., p, p+1,..., 2p —gq correspond
to a random 2p — ¢ tuple.
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In evaluating & (Wq, s, R) itis helpful to observe that W, s g may include multiple
isomorphisms of the same graph. Since the probabilities Pr(W =Gy|{1,..., p}] U
Gy[{pr—q.....2p—q}]) and Pr(W = Gy[{1,....p}] U Gn[lp — q.....
2p — q}]) coincide when W and W' are isomorphic to one another, we can also
“represent” W, s r as a multi-set, with one (arbitrary) labeling of each of the non-
isomorphic graphlet stitchings retained as elements, but with multiplicities equal to
the number of isomorphic appearances. For example, the cardinality of W, . is
liso (/)| x |iso (/\)| =9, but with only three non-isomorphic elements. Inspecting
Fig. 5 we define the multi-set:

Wf}/\ = ({0 SHA{0OG D, (4, (S, .

Let vy g,s (W) denote the multiplicity of W in W;‘ r.s> for example the multiplicity
of X inWI“/\ isv; A (X)=4.

We then have that, using Eq. (87), the equality = (W;“ /\> =& (Wl, A ) Simi-

larly, inspecting W, , (see Fig. 0), we see that it also contains three non-isomorphic
elements, yielding

W= ({5, T 01 05,2, (7,2), (5, DY)

Finally, it is easy to see that W;n A= A}, {(/A,3)}). The reader may verify that

W= (2] A DD, W = (E) AL DD, W= (A} (4, DD
as well as that

WL =0 (G D, (2,2,

WP =AREACL DD WS =0
These multi-sets will be used to study the covariance of (Py (A), Py (A)) as well
as the variance of the transitivity index.
At the risk of overkill, the following calculations illustrate how the two stitch-
ing probability definitions, Eqs. (86) and (87), coincide. For the two-star example,
starting with Eq. (86), I get

Pr(A=EGN[{1,2,3]] & AN =EGyN[{1,4,5}])
liso (/)2

& (Wl,/\> =
1
=|iso(/\)|2
+ (1 — D12) D13 D23}
X {D14Di5 (1 — D4s) + D14 (1 — Dis) Das + (1 — D14) Di5Das}]

E[{D12D13 (1 — D23) + D12 (1 — D13) D23

=m {E[D12D13(1 — D23) D14D15 (1 — Dys)]|

177
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Tailed 3-Star
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FIGURE 5 Stitchings of two-star graphlets with one common node.

Tailed 3-Star

3

Notes: Depiction of all possible ways to join (or “stitch”) a pair of two-star (/\) subgraphs

together with one node in common. Each of the resulting subgraphs is a pentad wiring. The

Source: Author’s calculations.

liso (/\)| =9 elements.

+4E[D12D13 (1 — D23) D14 (1 — D15) D4s)

+4E[D12 (1 — D13) D23 D14 (1 — D1s) Dysl}

[vl‘/\ (X)) Pr(X

iso (A))?

dashed gray edges involve pairs of nodes that are not common across the pair of two-stars.
Hence the subgraph induced by the five nodes in the pentad may or may not include these
edges. The set W, » has iso (/\)| x

=GyI[{1,2,3]]JUGy[{1,4,5}]D

+v a0 COPr(X =Gy I[{1,2,3}]JUGN[{1,4,5}])
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FIGURE 6 Stitchings of two-star graphlets with two common nodes.

—_—

Notes: Depiction of all possible ways to join (or “stitch”) a pair of two-star (/\) subgraphs
together with two nodes in common. Each of the resulting subgraphs is a tetrad wiring. The
dashed gray edges involve the pair of nodes that is not common across the pair of
two-stars. Hence the subgraph induced by the four nodes in the tetrad may or may not
include this edge.

Source: Author’s calculations.

Hvy 4 ()Pr(S =Gy [{1,2,3]]UGw [{1,4,5}])]

= Y v (WPr(W=Gn[{1.2,3]]UGy [{1,4.5}])

W m
MWEA

=s(wr,). (88)
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The third equality follows from relationships like E[D12 D3 (1 — D23) D1a(1 —
D15)Dss] = E[D12D13 (1 — D23) (1 — D14) D15D4s5], which allow for the grouping
together of terms. The balance of the equalities are consequences of the definitions
given above.

Sampling variances

With the above notations in hand, I now calculate the sampling variances of P(N)
and Py (/) as well as their covariance. Holland and Leinhardt (1970, 1976) were
the first to derive variance expressions for subgraph counts. The specific develop-
ment presented here follows Bhattacharya and Bickel (2015). A Hoeffding (1948)
variance-composition gives

A )=CrzOOC G )
Py (M) “\3 = 3/\¢/\3—¢ T (AL A) B (A)
with £, (A), ¥4 (A) and g (A, /\) as defined by (85) above (using the shorthand

%4 (S, 8) = X, (S) etc). Using the fact that each of these variances and covariances
is zero when g = 0 and reorganizing terms gives

(R0 SO0

q=

B (N—3)!2:| P()\)? P(A)P (M)
| O NIIN=6)!]| P(AYP(N)  P(N)? '

In what follows I assume that the network generating process is such that, for
each N, ¥, (A) and X, (/\) are not identically equal to zero for ¢ > 1. This prevents
Py (/) and Py (/) from exhibiting degenerate U-Statistic-like attributes (c.f., Gra-
ham, 2017, Theorem 1). The restriction is a real one, ruling out the Erdos-Renyi case.
Separate results for this special case are presented below.

As introduced earlier, in order to accommodate sequences of networks with vary-
ing degrees of sparsity, we can index the underlying population graphon by N,
setting hy (u, v) = pyw (u, v) with w (u, v) = fy, y |p, (u,v| Dij = 1) and allow-
ing py — 0 as N — oo. Under such a sequence of GGPs P (A ) and P (/) will tend
to zero. In order to understand the properties of Py (/) vis-a-vis P (/) we must
normalize. It is natural to normalize according to the number edges in the subgraph
under consideration.
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Let P (1) =P (L) /pxs P(N) =P (M) /py, Pn(A) = Py (A)/py and so
on. So normalizing I get

(- SO

§ e EW,n)  AE(Wen )
101\_/55 (Wq A /\) :01\_/45 (Wq A
[, w=3r ] P(A)Y? PPN
N!(N —0)! P(A)P (M) P(N)?

(89)

Expression (89) agrees with the corresponding expression of Bhattacharya and

Bickel (2015) for injective homomorphism frequencies (Equation (3.8), p. 2395).30

The main difference is the analog of & Wq A ) in their expression is itself an

injective homomorphism density, whereas here & (Wq /\) is neither an injective

homomorphism nor an induced subgraph density and instead involves checking for
particular patterns of both adjacency and non-adjacency as described above.

Rates of convergence

To understand the rate of convergence in mean square of, for example, Py (1) toward

P (), we need to determlne the order of each of the terms in (89). Let e (R) = =

|E(R)| and e (S) |€ (S)| denote the number of edges in graphlets R and S. Next
-1 N—p\ _ q

observe that ( ) (q)(p—q) =0 (N ) We therefore have that the terms in the
summation indexed by ¢ in (89) are O (N 9oy E(R),o em) o (E (Wq,R’S)) for g =
1,..., p. I divide these terms, closely following Bhattacharya and Bickel (2015), into
three cases:

Case 1 (¢ = 1): when g = 1 the number of edges in all elements of W, g, s equals
e (R) + ¢ (S) for any subgraphs R and S. Hence O (8 (Wi r,s)) = O (p;,(R),o;,(S)),
yielding

0 (N p® o e(S)) 0(E(Wiks) =0 (Nfl)'

The ¢ = 1 summand in (89) is of order N~'. In general, from the theory of U-
statistics, one would expect this to be the leading variance term; however, the present
situation is more complicated.

30 See also Green and Shalizi (2017, Lemma 1).
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Case2 (g =3 orqg=p): In this case the order of E (W& L\> is O (pg’v),

c (W& /\) is O (,0/2\,) and Wy » x 1s empty so that & <W3, A, /\) = 0. Therefore,
recalling that Ay = (N — 1) py equals average degree,
3 —2¢(A)

0<N— Py )0(
_3 —2¢(/N\)
o(Npy 0(

—e(A) —e(A
Ne( )pNe( ))0( (W3,/,\,/\)>:0(1)'
Case3(g=20or 2<g<p-—1)): Here the order of E(W2’&> equals

0 (pZe(/\)(ql)> =0(py) E (Wz, /\) equals 0( 2e(/\)(q1)> = 0 (py)

N Py
and that of 2 (Wz’ /7\’/\> equals O (pe(/\)Jre(/\)—(q—l)) — 0 (). Therefore

—

10) <N3p

N

/

0 (N_z,o[;e(

For the two variance terms we have

V(ﬁN(/\)>:O<%)+O(NL)\N)+O($>
V(ﬁN(/\))=0<%) +0(N+\N)+O (N;)\?)

indicating that the rate at which, for example, Py (M) converges in mean square
toward P (/\), depends on the behavior of average degree as the network grows large.
This reflects the fact that, depending on a combination of the nature of the graphlet
of interest and the rate at which Ay does, or does not, grows with N, several of the
terms in (89) may be of equal order.

For any increasing sequence of average degree we have

V(IS‘N (4\)) =0 (max (%,

1

)

3
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v (ﬁN (A )) -0 (%)

C(f’N(L\),ISN(/\)) =0 (%)

If Ay > CN'/3, then the rate of convergence is V'N for both Py (/\) and Py (/).
In the sparse case, with Ay — A, P (/\), due to the acyclic structure of the two-star
graphlet, remains estimable at the ~/N rate. However in this case all three of its
variance terms are of equal order. In contrast P (A) is (evidently) not consistently
estimable in the sparse case.

Asymptotic normality

When average degree is Ay > CN 13 such that both Py (/\) and Py (/) converge
at the /N rate, an application of Theorem 1.c of Bickel et al. (2011) establishes that,
under some regularity conditions,

W(I%N<A>—1§<A>)3N(<O),9<élw 21 (4 ) ))
Py (1) =P (1) 0 AR
(90)

where £ (A) = p;,(’El (M), S1(A, A) = ,0,;521 (A, /) etc. Proving (90) is rel-
atively straightforward. I do not sketch the argument here, but note that the main
tools needed were already introduced in the analysis of dyadic regression appearing
in Section 4 above.

As noted previously, if Ay — A as N — oo such that the network is sparse in the

limit, then a general result on VN (f’N (A) — P (A )) is unavailable. In contrast, part

(b) of Theorem 1 in Bickel et al. (2011) implies that not only does IsN (/\) remain
V'N consistent for P (/\) in this case, but also that VN <I5N (AN) — P (A )) remains
asymptotically normal. The limiting variance in this case differs from the one given
in (90); all terms in V (I3N (A )) are of equal order (and hence should be retained).
More generally the sampling properties of induced subgraph frequencies under
sparse graph limits remains relatively unexplored. The sensitivity of rates of conver-
gence and distributional properties to assumptions about Ay raises concerns about

uniformity of inference procedures. A similar concern is suggested by the properties
of these statistics when the graphon is constant. This last case is considered next.

Two-star and triangle counts in Erdds-Renyi networks

The analysis above assumes that the graphon is such that C(1(R =Gy [ip]).
1(S=Gnip])) #0 whenii, and j, share exactly one index in common (such that
) (WI,S) — P (S)? > 0). This condition will generally hold for graphons which vary
in u# and v (such that the events D> = 1 and D3 = 1 are not independent), but it does
rule out the Erdos-Renyi case (where links form independently with constant proba-
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bility p).*! This graph generation process has been extensively studied by probabilists
for over sixty years (e.g., Janson et al., 2000).

In statistics, Janson and Nowicki (1991) and Nowicki (1991) studied the sampling
properties of induced and partial subgraph frequencies when the network is an Erdos-

Renyi one. They demonstrated asymptotic normality of such frequencies with a (g’ )
rate of convergence. These earlier results, at first glance, appear to be in tension with
the more general results of Bickel et al. (2011), who showed asymptotic normality
with a +/N rate of convergence under general graphons. It turns out, however, that the
leading (i.e., ¢ = 1) term in (89) is identically equal to zero under the Erdos-Renyi
GPP. The Erdos-Renyi GPP is a “degenerate” special case.

To see this, evaluate the stitching probabilities (87) under the Erdos-Renyi GPP

to get

[x

& (Wi, )=rt- 0, E(WZ,/\>=gr03(1—,0)2+$P4(1—,0),

[1]

<W3,/\) = %102(1 = p)
and
E(WI,Q) = p°, E(Wz,/,\) =0’ E(W&/,\) =p’

and

E(Wipp)=p" =0, E(WZ,/\,L\)%/}“(l—p), 2 (W, 5 0) =0.

Under these graphlet stitching probabilities the ¢ = 1 variance term, which is
generally the leading variance term in Bickel et al. (2011, Theorem 1), instead equals

A SN ) oo
SI(ALA) SN )T R

Hence, under the (dense) Erdos-Renyi GPP, the leading variance term is instead the
q =2 one, yielding for 0 < p < 1 but p #2/3,

M [ PN(A)—P(A) \ D 0 X(A)  Zo(A,N)
(2)<PN(/\)—P(/\)>_)N<<O>’9(22(/\,/\) 5 (A) >)
©On

where

( (1) zz(/\,/\))zp3(1_p) P 5p2=3p)
22(A A B2 (M) 1p2-30) §2-30)° )

31 See Menzel (2017) for more examples of degenerate graphons.
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@ Wealth < 150,000 TSh @ 300,000 TSh < Wealth < 600,000 TSh
150,000 TSh < Wealth < 300,000 T'Sh @® Wealth > 600,000 TSh

FIGURE 7 Nyakatoke risk-sharing network.

Sources: De Weerdt (2004) and authors’ calculations. ‘TSh’ is an abbreviation for Tanzanian
Shillings.

See Corollaries 2 and 4 of Nowicki (1991) for additional context and references to
the primary literature.

Uniform inference

The analysis of the previous two subsections showed how the limiting distribu-
tions of two-star and triangle frequencies are sensitive to the form of the graphon,
hy (u,v) = pyw (u, v). If py approaches zero too quickly, or w (u, v) is a constant,
the rate of convergence of the estimator changes. This raises concerns about how
to conduct inference in settings where the limiting graph is ‘close to sparse’ and/or
the graphon is ‘nearly’ constant, or equivalently, dependence across dyads sharing
agents in common is weak. In such settings an approach to inference based on (90),
may have poor properties when N is finite. This is because the ¢ = 1, ¢ =2 and
g =3 terms in the variance expression (89) may all be of similar order. For this rea-
son, it seems advisable to keep all terms when calculating variances for test statistics.
Clearly, there are open questions on how best to undertake testing in this setting.

Application of results to inference on transitivity in Nyakatoke

De Weerdt (2004) collected information of risk-sharing relationships across 119
houses in Nyakatoke, a small village in Tanzania (see Fig. 7). The density of this
network is 0.0698, while its transitivity index is 0.1884, nearly three times a large.
A natural question is whether the high transitivity index simply reflects “chance” or
is a real feature of Nyakatoke. To assess this I construct a confidence interval for the
transitivity index using the delta method and the results outlined above. Other than
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the empirical illustration included in Bhattacharya and Bickel (2015), I am aware of
no other published examples of large network inference on the transitivity index.

The natural analog estimates of & (Wl A ), & (Wl A ), and & (Wl A /\> in-

volve summations over all (§) () (3 77) =30 x (¥) pairs of triads sharing exactly one
common agent. This requires evaluating the configuration of all (1;] ) pentads in the
network; a computationally non-trivial task even for medium-sized networks.*” Tt is
for this reason that Bhattacharya and Bickel (2015) suggest a subsampling approach
to variance estimation.

For the Nyakatoke network we have a total of (] ;9) =273, 819 triad configura-

tions to count and a total of (1 ég) = 182, 637, 273 pentads that need to be inspected in

order to calculate variances. These are large numbers, but nevertheless small enough
for a desktop computer to handle in a few minutes. Direct calculation gives

0.00115 0.00496

Py 2= 0.00030) * F¥ D= (0.00100)
These standard errors include estimates of both the first and last terms in (89) above,
although the second of these is asymptotically negligible as long as average degree
grows fast enough (which is assumed for the asymptotic normality result).

Applying the delta method I get an estimated standard error for the transitivity
index of 0.011; this suggests that transitivity is significantly greater than what we
would expect to observe under the Erdos-Renyi random graph null.

7.2 Moments of the degree distribution

Networks are complex objects, making their analysis both conceptually and techni-
cally challenging. One approach to simplification involves looking only at the number
of links each agent has, that is their degree, Dj1 = > ji Dij ignoring all other ar-
chitectural features of the network. Indeed, a substantial empirical literature focuses
on the degree sequence of a network as its primary object of interest (Barabdsi and
Albert, 1999; Barabasi, 2016).

Most real world networks exhibit substantial degree heterogeneity, making the
degree sequence an interesting statistic to study and model. A network’s degree se-
quence is also straightforward to measure. A researcher need only ask about the
number of friends, suppliers, or partners each agent has, not their identity. Many
general purpose datasets collect such information. For example General Social Sur-
vey (GSS) sometimes collects information on the number of close confidants (cf.,
Marsden, 1987; McPherson et al., 2006), while demographers routinely collect infor-
mation on the number of lifetime and/or concurrent sexual partners. Simplicity and

32 For each pentad we look at the thirty pairs of triads that can be constructed from it, such that the two
triads share exactly one agent in common.
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data availability both drive the substantial focus on degree distributions in empirical
work.

It is possible for two graphs with the same degree sequence to be topologically dif-
ferent; their diameters and transitivity indices, for example, may differ substantially.
At the same time a network’s degree sequence is an important summary statistic, con-
straining other features of it, even local ones. This is shown by Theorem 3, which I
believe is an original result (albeit perhaps folk wisdom; cf., Snijders et al., 2006).

Theorem 3 (Degree Sequence Moments). Let G be an exchangeable random graph
of order N. The m'" moment of Dy = Zj# D;; equals

m
E[Dlni] chk,m X E[Dijl X oo X Dijk]
k=1
form=1,2,...,N—1and Cy,, = (N,:l) (Zpepk,m m,xmi'xpk,) with

k
Promn =1 (P1,-.., Pr) - Zlﬂj=m, pj€Nforj=1,....k
=1

and N the set of positive integers.
Proof. See Appendix A. O

Theorem 3 implies that the first four uncentered moments of D; equal

E[Di]=(N =1 P(-) ©2)
E_D,'ZJF—=(N—1)P(*)+(N—1)(N—2)Q(/\) 93)
E[D} ]=(N-1)P()+3(N—1H(N =20 () (94)
AN DWN - (N -3)0(F)

E[DL]|=(N=DP()+T(N=1)(N=2)Q(}) 95)

+6(N-1)(N-2)(N-3)0(N)
+N-1DN-=-2)(N=3)(N—-4) 0 (X).

In dense networks it is natural to divide D;4 by N — 1. With degrees so normal-
ized, all terms in Egs. (92) to (95) are asymptotically dominated by the last one as
N — oo. Hence, in the limit, the k' moment of normalized degree equals the injec-
tive homomorphism density of k-stars in the limiting graphon (cf., Diaconis et al.,
2008, Lemma 4.1). In the dense case we have, for example, that

D4
lim V< s
N_

N—o0

1>=QUW—P()P() (96)
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When the network is not dense, the natural normalization is instead by average
degree, Ay = (N — 1) py, which may no longer be proportional to N in the limit. In
the sparse case, Ay — A, and all terms in Egs. (92) to (95) are of equal order. For
example, the fourth uncentered moment of D; /Ay equals, in a sparse limit,

. Di\*'| _P(—)  70(N)  60(F)  ~
hmIE|:<A ):|— 3 + 2 + 2 + 0 (X)),

where a tilde above a subgraph/homomorphism density, as earlier, denotes the density
divided by ppy raised to the power of the number of edges in the subgraph under
consideration (e.g., 0(MN)=0(N) /:012\/)'

From (92) and (93) have that, in the sparse case,

limV<Di+>=[Q(/\)—ﬁ()I3()]+u_ 97)
N—00 AN A

There are several peculiarities in these expressions. Returning to the dense
case, when the graph is an Erdos-Renyi homogenous random graph, Q (A) =
P (—) P (—), and (96) indicates that the distribution of D;, /(N — 1) is degener-
ate in the limit. In that case normalizing D; by 4/ N — 1 results in a random variable
with a non-degenerate variance in the limit since

VDiy ) =(N-DIN=[Q(N)=P()P(I)]+(N-DP()A—-P()).

Observations such as these suggest that, as with subgraph frequencies, it may be
desirable to retain all terms — including nominally asymptotically dominated ones —
when calculating the variance and other moments of the degree distribution.

Atalay et al. (2011) construct a theoretical model of supply chain formation.
They informally assess the plausibility of a calibrated version of their model by
comparing their model-predicted degree sequence with the one observed in the US
Buyer-Supplier network (see their Figure 1). A formal minimum y? type specifica-
tion test of their model could be constructed on the basis of Theorem 3.

7.3 Further reading and open questions

Subgraph frequencies are, in many ways, analogous to moments of a distribution.
Relatedly methods of estimation and inference for subgraph frequencies have many
applications, from attaching a measure of uncertainty to statistics like the transitivity
index, to facilitating specification testing and model estimation. As the discussion
here shows, the large network properties of empirical subgraph frequencies depend
on the nature and magnitude of dependence across links induced by the graphon
as well as properties like sparsity. Formulating methods of inference for subgraph
frequencies that are adaptive to these features of the GGP would be useful. Menzel
(2017) makes some progress in this direction, but substantial work remains.
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Volfosky and Airoldi (2016), extending results due to Diaconis and Freedman
(1980), present results relating finitely and infinitely exchangeable arrays. Results of
this type could be useful for understanding how best to proceed when the network
in hand corresponds to the equilibrium of an N-player game where the conditional
independence structure associated Aldous-Hoover type GGPs may not formally hold,
but where — for N large enough — it should hold approximately.

Bhattacharya and Bickel (2015), Green and Shalizi (2017) and Menzel (2017) dis-
cuss subsampling and bootstrap methods for exchangeable random arrays. Adapting
ideas introduced by, for example, Menzel (2017) to accommodate sparse networks
would be theoretically interesting and practically useful.

I have emphasized more recent work on subgraph frequencies, but the earlier pa-
pers, beginning with the seminal one by Holland and Leinhardt (1976) are rewarding
to read (or re-read) in the light of contemporary developments. The survey paper by
Jackson et al. (2017) presents many real work examples of degree distributions and
other network statistics. This paper also relates these measures to theoretical ideas in
the economic literature on network formation and network games.

A rather different approach to asymptotic analysis of network statistics builds
off the probability literature on random geometric graphs (Penrose, 2003). These
models posit a strong form of homophily such that agents which are far apart from
one another (in some, perhaps latent, space) link infrequently (or not at all). The
(latent) spatial structure renders agents non-exchangeable. This mechanism gener-
ates sufficient independence among distant units such that LLNs and CLTs can be
proven. Leung (2019), Kuersteiner (2019), and Leung and Moon (2019) develop
these ideas to prove LLNs and CLTs for network statistics where the observed net-
work is assumed to be a strategic network equilibrium configuration. A challenge of
this approach is that valid inference appears to require information on agents’ posi-
tions (so that HAC type variance estimators can be used). Unfortunately it is often
most natural to view such positions as latent (e.g., Hoff et al., 2002; Krivitsky et
al., 2009). Nevertheless, this approach, by building on insights from the literature of
random geometric graphs, as well as spatial statistics, seems well calibrated to some
network applications. For example, sparseness seems to be easier to handle in this
framework (cf., Graham, 2016).

Understanding the connections between approaches to large network inference
based upon random geometric graphs versus exchangeable random graphs remains,
to my knowledge, largely unexplored.

8 Strategic models of network formation

The models of network formation introduced in Sections 4, 5 and 6 are external-
ity free: the utility two agents create by forming a link is invariant to the presence
or absence of links elsewhere in the network. In contrast, the theoretical literature
on network formation, beginning with the seminal paper by Jackson and Wolinsky
(1996), is decidedly focused on the study of models where agents’ preferences are
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interdependent. That is, the utility dyad {i, j} generates by forming an edge may vary
with the presence or absence of additional edges elsewhere in the network. For ex-
ample, if i and j share many neighbors (“friends”) in common, they may reap utility
gains from ‘triadic closure’ when linking; incidentally also forming many triangles
(Simmel, 1908; Coleman, 1988; Jackson et al., 2012).

Models with interdependencies in preferences are typically called strategic mod-
els of network formation. The use of the word strategic here stems from connections,
both historical and substantive, between recent theoretical research on networks and
game theory. I will comment on this nomenclature after first introducing the standard
notion of equilibrium used by theoretical network researchers in this area: pairwise
stability. Pairwise stability is the equilibrium concept introduced by Jackson and
Wolinsky (1996). Here I introduce the definition which excludes the possibility of
transfers between agents; the transferable utility case was introduced in Section 3.

Letv; : Dy — R be a utility function for agent i, which maps adjacency matrices
into utils. In order to define pairwise stability I need a definition of marginal utility.
As earlier, the marginal utility for agent i associated with (possible) edge (i, j) is

Vi (D) — Vi (D—ij) ifD,'j =1

viD+ij)—v;(D) ifD;;=0 ©8)

MU;; (D) = {

recalling that D — ij is the adjacency matrix associated with the network obtained
after deleting edge (i, j) and D + i the one obtained via link addition.

Definition 6 (Pairwise stability without Transfers). The network G is pairwise stable
if (i) no agent wishes to dissolve a link

V(i,j)e&(G), MU;;(D)>0and MU;; (D) >0 (99)
and (ii) no pair of agents wishes to form a link
Y, j)¢EG), MU;; D) >0 = MUj; (D) <O0. (100)

Two features of Definition 6 merit emphasis. First, an implication of the definition
is that utility is nontransferable across agents. This differs from some of the models
introduced earlier. Second, the strategic moniker aside, pairwise stability is a really
non-strategic/myopic notion of equilibrium. This point is elegantly made by Ostro-
vsky (2008) in a related context. Pairwise stability does not require agents to engage
in any “what if” or forward-looking introspection. Specifically it does not require
agents to imagine what might happen to the rest of the network were they to add or
delete a link, rather it simply requires them to behave optimally given the actions of
all other agents in the network. The key feature of so-called strategic models relative
to those in Sections 4, 5 and 6 is not behavioral, but in their different assumptions
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about the nature of preferences. Here utility is interdependent; this is the interesting
complication.”

For any profile of preferences {v,-}?i | there may be many network configura-
tions satisfying Definition 6.** The potentially high cardinality of the set of pairwise
stable network configurations makes the direct application of econometric methods
designed for the analysis of games computationally prohibitive (c.f., Bajari et al.,
2010b, 2013). Nevertheless insights from research in this area is valuable for analyz-
ing empirical models of network formation.

8.1 A fixed point approach with increasing preferences

One example of this claim is provided by an elegant and interesting paper by
Miyauchi (2016). This paper draws on insights from the theory of supermodu-
lar games (e.g., Topkis, 1998) and their empirical analysis (Jia, 2008; Uetake and
Watanabe, 2013) to formulate a tractable estimation strategy for a class of strate-
gic network formation models. Following Miyauchi (2016) consider the mapping
oD) : Dy — ]I(N):
2

1(MUi2 (D) = 0)1(MUz (D) = 0)

1(MU3 (D) = 0)1(MU3; (D) = 0)
pD)= ) ) (101)

1(MUn-1y D) =0)1(MUyn-1 (D) = 0)

Observe that 1 (MU;j (D) > 0)1(MUj; (D) > 0) equals 1 if condition (99) of pair-
wise stability holds (which implies edge (i, j) is present) and zero otherwise (which
implies condition (100) and hence the absence of edge (7, j)). Under the maintained
assumption that the observed network is pairwise stable, its adjacency matrix is there-
fore the fixed point

D = vech™! [¢ (D)]. (102)

Here vech(-) vectorizes the (1;, ) elements in the lower triangle of an N x N matrix
and I define its inverse operator as creating a symmetric matrix with a zero diago-
nal. There may, of course, be many d € Dy such that d = vech™! [¢ (d)]. Miyauchi
(2016) notes, however, that if the preference profile {v,-},N: | satisfies what he calls
a non-negative externality condition, namely that the marginal utilities M U;; (d) are
weakly increasing in d for all i and j, then one can characterize the set of pairwise sta-
ble networks with Tarski’s (1955) fixed point theorem (Miyauchi, 2016, Proposition
1). The invocation of Tarski (1955) implies that the set of pairwise stable networks

31 might also be interesting to consider estimation and inference under different refinements of the
pairwise stability concept; such refinements might posit more sophisticated play by agents.

34 For results on the existence and uniqueness of pairwise stable networks see Jackson and Watts (2001)
and Hellmann (2013).



192

CHAPTER 2 Network data

corresponds to a complete lattice with a maximum and minimum equilibrium. Further-
more any pairwise stable network is a partial subgraph, defined on nodes {1, ..., N}
of the maximum equilibrium. And the minimum equilibrium is always a partial sub-
graph, again defined on nodes {1, ..., N} of any pairwise stable equilibrium. This
has many useful implications. Trivially, the set of equilibrium networks can be sorted
according to density; less trivially their degree sequences can also be ordered.

Of course, the non-negative externality requirement is restrictive; there are many
settings where diminishing marginal utility in links might be plausible (e.g., capacity
constraints). At the same time, many extant empirical models of network forma-
tion do satisfy the restriction, so exploring estimation maintaining it is reasonable.
Miyauchi (2016, Section 3.3) provides additional discussion.

Again borrowing results from the theory of supermodular games, Miyauchi
(2016) shows that the minimum equilibrium, say d, can be computed by fixed point
iteration of (101) starting from the empty adjacency matrix, while the maximum equi-
librium, say d, may be computed by fixed point iteration starting from the adjacency
matrix associated with the complete graph K. A similar computational insight, al-
beit in non-network settings, features in Jia (2008) and Uetake and Watanabe (2013).

At this stage, to show how the above insights can be used concretely, it is help-
ful to parameterize the utility function, introducing both explicit heterogeneity and
a parameter vector. Adopting the random utility approach pioneered by McFadden
(1974), assume, for example, that

v; (d,U; ) = Zdij |:0l0 + Bo |:Z dikdjk:| - Uij:| , (103)
J k

with U = [Uij]i,je{l,...,N},i;éj’ 6 = (a, B)’ and the change in notation for the utility
function emphasizing that the econometrician does not observe the matrix of random
utility shifters U. In practice the elements of U, as is common in discrete choice
analysis, are assumed to be i.i.d random draws from some known distribution (e.g.,
the standard Normal or Logistic distribution).

Eq. (103) implies that the marginal utility agent i gets from a link with j is

MU;; (@, U; 6p) = a0 + Bo |:Z d,'kdjk] —Ujj (104)
k

This marginal utility is increasing in the number of links i and j have in com-
mon, embodying a structural taste for transitive closure (here I assume that 8y > 0).
Clearly (104) is weakly increasing in d € Dy and hence Tarski’s (1955) theorem
applies. For a given draw of U and value of # we can compute minimum and max-
imum equilibria, respectively d (U; 6) and a(U; 0), by fixed point iteration. Let
Gy (U;0) and Gy (U; 0) be the graphs corresponding to these adjacency matri-
ces. Using these graphs we can compute, for example, the injective homomorphism
frequencies finj (S, Gy (U; 0)) and £ (S, Gy (U; 6)) for S = A, A etc. These ho-
momorphism frequencies correspond to model predictions associated with specific
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draws of U and values of 8. Using simulation to integrate out the former, yields the
vectors

L [ i (S1.Gy (U7:0))
7 (0) =+ ; : :
— \ tinj (S5, Gy (UP0))
[ [ (851G (U50))
7(0) = z ;; - :
linj (S/, Gy (U(b); 9))

for UL, U@ .. UB 4 sequence of independent simulated random utility shifter
profiles and S, ..., Sy aset of J identifying motifs of interest.

Miyauchi (2016) works under the assumption that the econometrician observes
of c=1,..., C independent networks, with, in a slight change relative to earlier no-
tation, G, denoting the cth network/graph. Let  (G.) be the vector of S1,...,Sy
injective homomorphism frequencies as observed in the ¢’ network and let 7 @
and 7€ (0) be the corresponding expected frequencies at the minimum and maximum
pairwise stable equilibria for that network at parameter 6. These frequencies are com-
puted using simulation as described above. Under preferences (103) the only reason
these frequencies might vary with c is if the networks observed by the econometrician
vary in the number of agents within them.”

Miyauchi (2016) focuses on assumptions which may only partially identify 6,
but to begin with consider adding to the set-up the assumption that agents select the
maximum equilibrium (cf., Jia, 2008). In that case

E[7c (60) — 7 (Ge)] =0, (105)

is a valid moment condition. If the set of chosen motifs is sufficiently rich so as to
point identify 6, then consistent estimation of 6y by the method of simulated mo-
ments is straightforward (McFadden, 1989; Pakes and Pollard, 1989; Gourieroux et
al., 1993).

Because the asymptotic approximation involves C — oo, this approach hinges
upon the availability of a large number of independent networks (each described by
the same 6p). If, instead, only a single large network is observed, then econometrician
might use the methods outlined in Section 7 to form an estimate of the variance of
7 (Gy), say €2,r. An estimate of # could then be formed by minimizing the simulated
minimum distance (SMD) criterion:

fsmp = (7T (0) — 7 (GN)) Q' (7 (B) — 7 (Gw)).

35 Tn more complicated models, with covariates, these minimums and maximums will vary with ¢ due to
differences in the distribution of covariates across networks.
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Note that € is constructed under an Aldous-Hoover dependence/independence
structure; such a structure may not characterize the finite N structural model. An
additional approximation argument is involved; understanding and formalizing this
argument is required to (rigorously) derive the law of éSMD (suitably scaled and cen-
tered).

When analyzing incomplete models, researchers are often reluctant to make as-
sumptions about equilibrium selection (which complete the model). Miyauchi (2016)
shows that if the chosen vector of moments satisfies a certain monotonicity property
(see his Property 1), then inference can be based upon the pair of moment inequalities

E[7 (60) =7 (G&)] = 0 (106)
E[z, (60) — 7 (G)] <0.

Confidence intervals which asymptotically cover 6y with probability at least 1 — «
can be constructed using the approach outlined by, for example, Andrews and Soares
(2010). Injective homomorphism frequencies appear to satisfy the needed property,
although some induced subgraph frequencies may not.

8.2 Directed links with private information

Leung (2015) studies a model of simultaneous directed network formation where
agents have private information. In a directed network agent i may send a link to
agent j such that D;; = 1; agent j may or may not decide to reciprocate and send
a link back to i. The adjacency matrix is no longer symmetric, although it retains a
diagonal of structural zeros. The i’ row of the adjacency matrix records the set of
links agent i chooses to send to other agents, while the i’ column records the set of
links that other agents choose to send to i.

To describe Leung’s (2015) approach let D[_; .j be the sub-adjacency matrix con-
structed by deleting the i"" row from D. The marginal utility agent i receives when
she directs a link to agent j is

MU;; (D-i.1,X; 60) — Uij. (107)

An important implication of (107) is that while i’s gain from sending a link to j may
vary with the presence or absence of links elsewhere in the network, it does not vary
with the presence or absence of other links which i herself may or may not direct.
This restriction rules out interesting preference structures (see below), but simplifies
the analysis substantially. Ridder and Sheng (2017) develop an approach to relaxing
this feature of Leung’s (2015) setup. To describe the main ideas I work with a special
case of (107):

MU;; (D1 X: 60) =0+ BoDji + vo Y DiiDij+1(Xi. X;) 0. (108)
ki, j

for 6y = (0(0, Bo, Yo, 66)/ and ¢t (X i X j) a vector of possibly non-symmetric functions
of exogenous agent attributes. The parameter By indexes the utility gain associated
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with reciprocity in links, while yq captures the utility gain arising when a link is
supported. A directed edge from i to j is supported by agent k, if k directs links to
both i and j (this allows, for example, k to “referee” transactions between i and j).

Support, although related, differs from transitivity (cf., Jackson et al., 2012); re-
placing » ", Dy;Dij with )", DjxDji in (108) means that yy would instead index
a structural taste for transitivity (i.e., that a link to a “friend of one of my friends”
generates more utility). However a transitivity term of this type is ruled out by the
restriction that the marginal utility of an i to j link does not vary with the presence or
absence of other links which i may or may not send (cf., Ridder and Sheng, 2017).

Leung (2015) assumes that U; = (U;y, ..., Uii—1, Uiiz1, ..., Uin)’, the idiosyn-
cratic components of link utilities, are private information to agent i, while all other
features of the game are common knowledge to all agents. Let P;; denote the com-
mon prior held by all players other than i regarding the probability that she directs a
link to j. Let P denote the N (N — 1) x 1 vector of such common priors. In a Bayes-
Nash equilibrium agent i will best respond to the common prior by choosing to direct
an edge toward j according to

Dij=1|ao+ BoPji + 1o Z PPy +1 (X, X;) 80— Uij =0 ;
ki, j

that is i forms the directed edge only if the expected marginal utility from doing so is
positive. Assume, for example, that the {U;; }fvjzl are i.i.d. standard normals. Let

9ij (P, X;00) =@ | o+ foPji + 10 Z Pii Prj +1 (Xi, X;5) 8
ki, j

with @ (-) the standard normal CDF. A Bayesian-Nash equilibrium requires self-
consistency of beliefs such that P corresponds to a fixed point of the mapping.

12 (P, X;6p) ]

piv (P, X: 0)
@ (P, X; 6p) = : : (109)
on1 (P, X;0)

L onnv—1 (P, X;6) |

One approach would be to apply ideas analogous to those developed in Miyauchi
(2016) using (109). Leung (2015), instead creatively adapts the two-step approach
familiar from the wider econometrics literature on incomplete information games
(Bajari et al., 2010a, 2013). Let P be a nonparametric estimate of the belief vector

I
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P. With this estimate in hand, 6y, may be estimated by finding the maximum of the
criterion

R 5 5
max ;;DU Ing; (B.X:0) + (1= Dij)In[1 - 0y (B.X:6)].
(110)

using a standard Probit MLE program.

The challenge with this approach is that it is not obvious how one can consis-
tently estimate P. Unlike in, for example, the literature on entry games, where the
same player is observed playing independent replications of a game across different
markets, in the present set-up there is only a single game. Leung’s (2015) key insight
is to note that under an exchangeability assumption and a focus on symmetric equilib-
ria, estimation of P is possible because it implies that (ordered dyads) with identical
covariate configurations have identical ex ante linking probabilities. For the case of
discretely-valued X; Leung (2015, Proposition 1) shows, under assumptions, that for

P = [> e 1(r (Xi, X) =1 (X, Xj))rl X [Xky Dul (t (Xe, X0y =1(Xi, X)) ]

L))

sup )Pz‘j — Pij
i,jeV(GN)

at rate N'/2. Using these estimates in (110) results in a consistent and asymptotically
normal estimate of 6y under regularity conditions. The interesting features of these
results involve the need to account for first step estimation error as well as for de-
pendencies across dyads sharing one agent in common. Leung (2015) also presents a
variance estimator and an empirical illustration based on the network data collected
by Banerjee et al. (2013).

8.3 Bounded degree and restricted heterogeneity

Like Miyauchi (2016), de Paula et al. (2018) study a simultaneous-move complete
information model of network formation. They place three key restrictions on the
graph generating process. First, they assume that agents only wish to maintain a small
number of links. Second, that utility only varies with the addition or deletion of links
within a finite radius. For example an agent may care about the friends of her friends,
but not the friends of the friends of her friends. Third, there are only a finite number
of agent types and, crucially, agents are indifferent among links of the same type.
There is some nuance to the last restriction since indirect connections may matter.
Consider two Black individuals, each with a Black and White friend, the restriction
is that any third agent is indifferent between forming a link with either of these two
individuals. Similar restrictions feature prominently in one-to-one transferable utility
matching models (e.g., Choo and Siow, 2006; Graham, 2013; Galichon and Salanie,
2017). The first and last of these assumptions are “non-standard”, but de Paula et al.
(2018) show how they make identification analysis tractable.



8 Strategic models of network formation 197

They begin by noting that, under their assumptions, any rooted network — a con-
figuration of links within a fixed distance about a focal “root” node — will take one
of a finite number of configurations. Identification of preference parameters comes
from comparing model predictions about the frequency of these configurations with
their empirical counterparts.

The operationalization of this intuition into a workable method of inference is the
main contribution of their paper. To describe this contribution assume that the utility
agent i gets from network configuration D = d is, for example,

v; (d, U; 69) :Zdij |:01(/)Rij + Bo |:Zdikdjkj| + U; (Xj):| —00-1 Zdij > L
- T -

J J

Here R;j =r (X;, X;) is a vector of known symmetric functions of X; and X, L
is the maximum number links an agent might desire (known by the econometrician),
and U; (x) is an unobserved utility-shifter with known distribution. This utility shifter
varies with i, but only depends on j via the covariate X ;. The expression above
suggests that associated with each agent are just |X| shocks, one for each type of
agent. de Paula et al. (2018) actually attach L x |X]| shocks to each agent, but their
main ideas can be conveyed under the more restrictive set-up.

Let U; = (Ui x1),...,U; (X|X‘)), denote the vector of taste shocks associated
with agent i. Since agents maintain no more than L links, and preferences are only
affected by network structure within a certain radius, the number of logically observ-
able rooted network configurations is finite. For each of these configurations we can
ask, for a given value of 6 and draw of U;, whether an agent will unilaterally reject it
(e.g., given the configuration’s structure she may prefer to unilaterally dissolve some
links). de Paula et al. (2018) call the set of acceptable rooted networks a preference
class. Since the distribution of U; is known, the ex ante probability that any indi-
vidual falls into a particular preference class when 6 takes a particular value can be
computed (typically via simulation).

A network can be generated by choosing the frequency with which agents of (i) a
particular type, and (ii) belonging to a particular preference class, are assigned to spe-
cific rooted network configurations. Theorem 1 of de Paula et al. (2018) shows how
to construct these frequencies in a way which satisfies pairwise stability. A parameter
value belongs to the identified set, if there exists a feasible vector of allocation prob-
abilities such that the predicted frequencies with which the various rooted network
configurations occur match their corresponding empirical frequencies. Theorem 2 of
de Paula et al. (2018) shows how this question may be answered by solving a partic-
ular quadratic program.

The identification analysis assumes there are continuum of agents. Since their
graph is sparse, the object they work with is not a graphon, but its sparse graph analog,
called a graphing in the literature (Lovdsz, 2012). For inference they assume that the
econometrician observes a random sample of rooted networks, perhaps collected via
snowball sampling.
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8.4 Many agent approximations

Menzel (2016) studies a class of large network formation models with exchangeable
agents. He characterizes the limiting network as N — oo and investigates how to use
this limit to approximate the finite network in hand. One example of the family of
preference structures accommodated by his set-up is

MU;; (D, U; 6p) = ayRij + o |:min <Z DixDjx, 1)} +oUij — (InJ +aUp).
N——

k marginal cost

marginal benefit

(111)

The scale and location parameters, o and J, vary with N in a particular way in order
to obtain useful limits.

Menzel (2016) observes that a network is pairwise stable if and only if D;; =1
when MU;; > 0 and D;; =0 when MU;; < 0forall j € W;. The set W; includes all
agents j who are willing to form a link with agent i or, equivalently, who would not
veto such a link:

Wi ={j e V(Gy\{i} : MU;; > 0}.

When J grows with N at the appropriate rate, the number of links accepted by agent

i, among those available in W, is stochastically bounded (ensuring that the limiting

network is sparse). Furthermore, using extreme value theory, Menzel (2016) shows

that the effect of the endogenous choice set, WV;, on the probability of forming a

particular link is completely summarized by a conditional logit type inclusive value.
Let

Zij=(Xi. X}, Tyj)

for T;; = min (}_; Djx D, 1). Further, for purposes of illustration, let X; € {0, 1}
be a binary indicator for, say, gender. In this case Z;; takes values within the finite
set Z. For example woman i may link with woman j, with whom she shares at least
one friend in common, such that Z;; = (1,1, 1)’. Menzel (2016) demonstrates that
the probability that agent i’s highest utility link is of type Z;; = z, among all those
available to her, takes a logit form. Furthermore, when N is large, the inclusive value
in this probability depends only on agent i’s exogenous attribute X; (for preferences
structure different than (111) the argument may be a bit more complicated).

In setting up the sequence of network formation games appropriately, and also in
characterizing the resulting limit, Menzel (2016) demonstrates considerable ingenu-
ity and technical skill. Stepping back, the underlying intuition is quite simple. Under
exchangeability of agents, the link formation process for observationally identically
agents should be similar when N is large.



8 Strategic models of network formation 199

Next consider the link frequency “distribution”

N
1
Fn (Z)=ﬁ§;1(Dzj =1,X; <x1,X; <x2, Tij <t12)

for z = (x1, x2, t12)’. This is not a proper measure, it integrates to average degree, not
one. Nevertheless these frequencies have well-defined limits which Menzel (2016)
is able to relate to the limiting choice probabilities associated with the infinite agent
network formation game. Note that Fiy (z) is closely related to a network moment,
as introduced in (3.5) earlier. As in the other papers surveyed in this section, the
identification/estimation approach relates empirical frequencies with model-implied
counterparts. Characterizing these model-implied counterparts (in the limit) is non-
trivial. Menzel (2016) shows that depending on the preference structure considered,
as well as researcher assumptions about equilibrium selection, preference parameters
may be point or set identified. For point identified models Menzel (2016) suggests a
constrained maximum likelihood estimator based on the form of the limiting model.

8.5 Models with (unobserved) sequential meeting processes

Miyauchi (2016), Leung (2015), de Paula et al. (2018) and Menzel (2016) all model
network formation as a static game. Any underlying dynamics governing link forma-
tion are left unmodeled. This is in keeping with the agnosticism regarding equilibrium
selection maintained by these researchers. Mele (2017) and Mele and Zhu (2017),
in contrast, present models of network formation which make explicit assumptions
about how agents meet, form, dissolve and maintain links.

In their model pairs of agents meet sequentially. Upon meeting a dyad decides to
either form, maintain, or dissolve a link. Although the utility attached to any given
link may depend on current network structure, agents are not forward looking. Rather
agents myopically add, maintain, or subtract links in order to raise current utility
without anticipating the effects of their actions on the future decisions of other agents
in the network.

To discuss their results I work with the preference specification featured in Mele
and Zhu (2017). Let d; be a particular undirected network configuration in period ¢.
The utility agent i gets from such a configuration is given by

Bo
vi (d;, X, Uy; 6) = Zd,-,»z [a(@R;‘; + [ijd,-k,} = Um} (112)

J

with § = (a/, ,8)/. Here R?‘j =r* (Xi, Xj) is a vector of known functions of X; and
X ;. This term indexes, for example, the utility gains from homophilous sorting. The
second term in (112) captures the benefits associated with indirect connections; that
is, the return agent i receives from linking with j may, in part, depend on the number
of links j already has. If By > 0 (B9 < 0), then there exist utility gains from linking
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with more (less) popular agents. It is also possible to incorporate a transitivity, or
mutual friends, term into (112).

The preference shock Ujj; is a Type I extreme value random variable; indepen-
dently distributed across dyads and over time. I will return to the implications of these
assumptions for the interpretation and identification of the model shortly.

Under (112) the marginal utility agent i gets from a link with j is

0
MU;; (dr, X, Us; 60) = o R, + % [Z d./kt} = Uijr- (13
k

Mele and Zhu (2017) assume utility is transferable. This implies that if i and j meet
in period ¢ they will form (or maintain) a link if the net surplus from doing so is
positive (cf., Bloch and Jackson, 2007):

MU;j(d;, X, Uy; 6p) + MU;j; (ds, X, Uy; 6p) > 0<=>R§j060 + %[Z (dikl +djkt):|
k
(114)

> Uijt + Ujiy,

where R;; = R;“j + R?%,. The R;; term is analogous to the vector of regressors appear-
ing in the dyadic regression model discussed in Section 4. Observe, in keeping with
the undirected nature of the network, that (114) is invariant to permutations of the
agents’ indices.

Dyads meet one at a time (i.e., sequentially). In each period the probability that a
particular ij dyad is chosen, say p;;, is greater than zero. Let Z, = ij if dyad {i, j}
is chosen to meet in period ¢. This meeting variable equals one of the (1;/ ) possi-
ble dyad index pairs each period. Conditional on i and j meeting, as well as the
beginning-of-period-¢ network structure, the probability that they form (or maintain)
a link is logistic:

exp (Rjj0+ 5 [ (D + Dju)])

1+ exp (lejao + 80 [5 (Die + Djkt)]) .

Pr(Diy1 =Dy +ijIDy, X, Z; =ij; 60) =

This link probability function augments the simple dyadic logistic regression model
introduced earlier with terms, in this case a popularity effect, which arise due to
interdependencies in preferences.

Under these assumptions the sequence of adjacency matrices Do, Dy, ... is a
Markov chain with transition probabilities depending on the exact specification of
the meeting process and the logistic probabilities specified above. This chain is ir-
reducible and aperiodic. Therefore the ergodic theorem implies that, in the limit,
realized networks will correspond to draws from a unique stationary distribution.
Mele and Zhu (2017, Theorem 2.1) show that this stationary distribution equals (cf.,
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Blume, 1993)

exp (Qn (d; X, 6p))

TN (d, X, 9()) = ZvGDN exp (QN (v; X, 0()))

(115)

for Oy (d; X, 0) = ZIN=1 v; (d, X, 0; 9p). See also Mele (2017, Theorem 1). Eq. (115)
corresponds to what network researchers call an exponential random graph model
(ERGM). Robins et al. (2007a) and Robins et al. (2007b) provide an overview of
ERGMs for social network analysis. de Paula (2017, Section 4.1) provides an inter-
esting overview from the vantage point of an econometrician. The results of Mele
(2017) and Mele and Zhu (2017) provide a microeconomic foundation for (certain
forms of) ERGMs. This is interesting, especially in light of peculiarities of the ERGM
modeling framework emphasized by others (e.g., Shalizi and Rinaldo, 2013).

It turns out that Qy (d; X, 0) is also the potential function, in the sense of Mon-
derer and Shapley (1996), associated with a particular network formation game. Con-
sider preference structure (112), but with all the pair-specific preference shocks set
identically equal to zero. The set of networks which (locally) maximize Qy (d; X, 6)
correspond to the set of Nash equilibrium networks associated with the simultaneous
move network formation game under these zero heterogeneity preferences. The sta-
tionary distribution (115) clearly has modes at these equilibria. Mele and Zhu (2017)
assume that the econometrician observes a single draw from this stationary distribu-
tion. This draw, loosely, can be viewed as a random perturbation of an equilibrium
network in the associated “heterogeneity free” simultaneous move static game.

Unfortunately computing the maximum likelihood estimate of 8y is not straight-
forward. This is because the denominator in (115) involves a summation over all
undirected networks of order N. It is impossible to evaluate this summation di-
rectly except for trivially small networks. Furthermore approximate computation of
the MLE via, for example, Markov Chain Monte Carlo (MCMC) methods, is also
difficult (e.g., Bhamidi et al., 2011).

Mele and Zhu (2017), building on ideas in Chatterjee and Diaconis (2013) and
Chatterjee and Dembo (2016), propose an approximate variational estimate of 6 (cf.,
Daudin et al., 2008; Bickel et al., 2013). While their approximation does not generally
coincide with the MLE, they show that the difference between the two shrinks to zero
as N grows large.

At a high level they proceed as follows. First, consider the conditional edge inde-
pendence model introduced in (3):

d;ij 1—d;j
PrD=d;iq)=][q; (1—a;) . (116)
i<j

with g;; equaling the probability that 7 and j link. In this context the conditional edge
independence model is sometimes called the mean-field approximation. Exploiting
ideas in Wainwright and Jordan (2008) and He and Zheng (2013), they observe that
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the (log of the) constant of integration in (115) is bounded below by

% In| Y exp(Qn (v:0) | = E,[Qy (D:0)]+ %S(q)
veDy

with S (¢) denoting Shannon’s Entropy and the expectation with respect to the ap-
proximating mean field model (116). Next choose the probabilities ¢ = (12, q13, - - - »
gN—1n) to maximize the above lower bound. This is the variational problem. Clearly,
the optimal approximation will vary with 6, the structural parameter of interest. The
approximation will also not be exact, since conditional edge independence models
represent only a restricted set of all the possible probability distributions on Dy . The
variational estimate of 6y, say éVE, is chosen to maximize (115) after replacing its
denominator with the lower bound described above.

Mele and Zhu (2017), using a result in Chatterjee and Dembo (2016), show that
the lower bound approximation becomes tight as N — oo. Furthermore the limit of
the variational problem corresponds to finding a graphon. More precisely, they find
that as N — oo,

1. the stationary distribution associated with their strategic network formation model
is arbitrarily well approximated by a conditional edge independence model with
some graphon / (u, v), or a mixture of such models;

2. these graphons correspond to local maximizers of a limiting version of the varia-
tional problem; and

3. éVE coincides with a local maximizer of (115).

The first finding is to be expected given the Aldous-Hoover Theorem and associated
discussion in Section 3. The second result is related to work by Chatterjee and Dia-
conis (2013). It is of interest here since it provides a connection between a structural
model of strategic network formation and the exchangeable random graph theory re-
viewed earlier.

While Mele (2017) provides a nice microeconomic potential game interpretation
of ERGMs, and Mele and Zhu (2017) make important progress on methods of esti-
mation, major challenges in the areas of identification, estimation and inference in
this class of models nevertheless remain.

Christakis et al. (2010) also model link formation as a sequential process. Their
approach differs from that of Mele (2017). They assume the initial network is empty
and that all (];, ) dyads meet in a specific (unobserved) order. Upon meeting they my-
opically decide whether to form a link or not. After all pairs of agents meet once,
further link revisions do not occur. In order to construct a likelihood Christakis et al.
(2010) assigned a distribution to the unobserved meeting sequence and integrate it
out. For computation they develop a Bayesian approach based on MCMC methods.
One feature of their set-up is that the model may place positive probability on net-
work configurations that are not pairwise stable. In contrast the ergodic distribution
associated with Mele’s (2017) model places most of its mass in the neighborhood of
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equilibrium network configurations. While this may be viewed as undesirable, from
a computational standpoint the Christakis et al. (2010) method appears attractive. In
principal their model could be extended to allow each pair of agents to meet multiple
(but still a finite number of) times.

8.6 Further reading and open questions

With exception of the paper by Miyauchi (2016), all of the papers surveyed above
base estimation and inference on a single network. To get workable LLNs and CLTs
each of these authors deal with the dependence across links induced by strategic inter-
action in interesting ways. Leung (2015) introduces private information; in a resulting
Bayes-Nash equilibrium links are conditionally independent given common informa-
tion. The reduced form probability of a directed link from i to j implied by his model
is quite similar to the representation result associated with X-exchangeability intro-
duced in the context of dyadic regression in Section 4. To a first approximation this
probability depends only upon X; and X; (since the other sources of variation in
Zk#’ j Pyi Pyj should be rather modest when N is large enough). Therefore, rela-
tive to a simple dyadic probit model, the Leung (2015) model adds an equilibrium
constraint.

In de Paula et al. (2018) the key assumption appears to be that preference hetero-
geneity is over types of links alone, with no dyad-specific component. As mentioned
earlier, similar assumptions have proved to be very powerful in the literature on
matching. Although Menzel (2016) works with a model which generates a sparse
graph in the limit (with dependence across links vanishing), his use of exchangeabil-
ity arguments does suggest connections to the Aldous-Hoover type representation
results introduced earlier. Mele (2017) and Christakis et al. (2010) posit sequential
meeting processes that effectively “complete” what would otherwise be an incom-
plete simultaneous move N-player game. Each of these approaches have pros and
cons; a variety of computational and inference issues remain unsolved. At the same
time the creativity and diversity of them suggests that forward progress on these types
of models is possible. Better understanding the connections between different mod-
eling assumptions would be useful.

Another approach, not surveyed here, but nevertheless promising, involves work-
ing with subnetworks. A focus on subnetworks sidesteps some of the computational
challenges that arise when trying to apply methods from the econometrics of games to
network formation problems (where there are typically many agents). Sheng (2014)
pioneered this approach. Gualdani (2020) develops additional (related) results.

9 The bright and happy future of network econometrics

This chapter has surveyed a burgeoning literature on the econometrics of networks.
This literature — combining insights from econometric research on panel data and
games, new tools in applied probability and statistics, and original thinking — now
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provides a basic set of tools for the analysis of networks. Nevertheless substantial
work remains unfinished. As noted at the start of this chapter, datasets with natural
graph theoretic structure abound in economics, and increasingly feature in published
research. Each dataset exhibits its own peculiarities: in some links are undirected, in
others directed. The network may be bipartite or even multi-partite (e.g., Min, 2019).
The size and order of available network datasets vary immensely. In some cases a
network may be observed over multiple periods, in others just once. For many of
these settings there exist no extant econometric modeling strategies, in all of them
existing work could be improved in a number of ways.

A defining feature of the econometric approach to modeling network formation
is its random utility foundation. When preferences are interdependent — where the
utility two agents attach to a candidate link may vary with the presence or absence
of links elsewhere in the network — multiple equilibrium network configurations are
likely. The analysis of incomplete models is an important recent accomplishment
of econometrics. The combinatoric complexity of large networks will require new
developments in this area. The set of papers surveyed in Section 8 gives some flavor
of the key issues and possible solutions.

Another defining feature of modern microeconometric research is the incorpora-
tion of unobserved heterogeneity; heterogeneity that agents observe and act upon, but
which is unobserved by the researcher. In the single agent setting panel data facili-
tates the identification and estimation of models with rich heterogeneity structures.
Networks have natural panel-like aspects. In a dense network each agent decides
whether to (attempt to) form a link with all other agents. Multiple decisions per agent
are observed. Leveraging this panel-like structure has been a key feature of some of
the contributions surveyed in Sections 4, 5 and 6 above.

Understanding the properties of the different methods surveyed above under se-
quences of networks which are dense, sparse or somewhere in between, remains
incomplete. Uniformity of testing procedures across these various cases would be
desirable. Some preliminary work on bootstrapping methods in the networks setting
now exists (e.g., Green and Shalizi, 2017; Menzel, 2017; Davezies et al., 2019), but
this remains relatively unexplored. Semiparametric efficiency bounds are yet to be
characterized, let alone the development of estimators attaining them. Computational
advances will be important for spurring real world application.

This chapter has focused on network formation. While the question of how net-
works form is scientifically interesting, so is that of what they do? This latter question
was a key driver of the peer effects literature which emerged after Manski (1993).
Developing methods for simultaneously modeling the formation and consequences
of social and economic networks remains an important open area (Auerbach, 2016;
Johnsson and Moon, 2017). Finally, although more and more empirical work with a
network dimensions appears each year, application of the methods outlined above in
substantive empirical work is a high priority. In addition to whatever subject area in-
sights such applications may produce, they will no doubt spur further methodological
innovations.
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Appendix A

Lemma 2 (U-Statistic with Estimated Parameter). Let {Zi},N: | be a simple random
sample drawn from some population Fz and ¢ (Zi, Zj; B, y) be a function from
7 x Z to R’ indexed by p € B and y € C (with B and C compact subsets of Rm#)
and RYI™Y) respectively). Suppose that ¢ (z1,z2; B, y) is twice continuously differ-
entiable in y for all 71,22 € Z X Z with

E[lI¢ (Z1. Za: B. p)ll5] < 0 (17
IE[HM ]<oo (118)
ay’ F
ay’ yp F

_ de 1
Then, for p a ~/N-consistent estimate of yo, and defining ¢y (B, ) 24 (g) X

SN SN 6(Zi 25 Boy) and © (B, v) L E[p (21, 223 B. )], we have

_ 2 I
VN[on (B.7) = @ (B.v0)] = —= D _ %0 (Z1: B.v0) + Topy (B)VN (7 — )
i=1

VN &
+op, (1) (120)
where ¢1 (z; B, v) =E[¢ (2, Z1; B, )] and

I/IO(Zhﬁa )’) =¢1 (Zl’ﬁa y) - Cb(ﬂ, 7/)

09 (Z1,Z7; B,
Fo,ﬂy(ﬂ)zlE[ @ ( 13),2/ B Vo)]

Proof of Lemma 2
A Taylor expansion of ¢ (/3, )7) in 7 about yy yields, after some re-arrangement and
centering,

VN [on (B.7) = @ (B, v0)] = VN [on (B, v0) — ® (B, 10)]
+Twnpy BDVN (P —w), (12D

with 7 a mean value between y and yp which may vary across the rows of the Hessian

def a7
Tn.gy (B,v) éf %},ﬁ,y) Next recall the definition of the L, | norm:

n m 1/2
IAll =Y [Z !a,-j}z] . (122)

j=1Li=1
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The mean value theorem, as well as compatibility of the Frobenius matrix norm with
the Euclidean vector norm, gives for any y and y* both in C,

Ham(ﬂ ARG I i{aa'm(ﬁ,y)}H -
CO Y= 2 I | g

(123)

Observe that 3%, {%f”)] is a matrix of U-statistics with kernels whose first mo-
P

ments are finite (by condition 205 above). By Serfling (1980, Theorem 5.4A) these
U-statistics converge in probability and hence, from (123)

H dpn (,3 y) AN (B.v™)
ay’

<O0p()-ly —vlla-
2,1

This condition, as well compactness of C, continuity of in y, and condition
(118), allow for an application of Lemma 2.9 in Newey and McFadden (1994) such

that sup H%f” — T, (B, y)HF 20 with Tgy (B.y) = E [WzlaiizW)] This,
ye

AN (B.y)
ay

along with consistency of p for yyp, is enough to ensure that %}/ﬁ/’;) L Lo, gy (B).
Eq. (120) then follows by observing that ¢y (8, y0) — ® (8, o) is a vector of mean
zero U-Statistics with Hajek projections equal to the corresponding components of
the first term to the right of the equality in (120) (see, for example, Theorem 5.3.3. of
Serfling (1980) and invoke condition (117) above). See Mao (2018, Lemma S1) for a
related Lemma.

Order of variances and covariances for p'" order induced subgraph fre-
guencies

Here I present the order of the covariance between empirical subgraph frequencies,
where the subgraph is of arbitrary order. For general p'"-order graphlets R and S we

C(PN(R),PMS)):(]:) 2;( )( )( )2 (R.S)
-(3) ZOIG)z0m

- —_p} P(R)P(S). (124)
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Normalizing by py raised to the number of edges in R and S, respectively p;,(R) and

pf\,(s), yields

c(hvw.tvs)={(") Y

1
r) =

G-
pI\a)\p—=a )| ps®ps®
0 (N4 @3 D) 0(E(Wy.x.5))

. (N—p)P?
_[ ~ NI(N —2p)!

} P(R)P (S)} . (125)
There are 2p — g vertices in each element of W, g s.

Case 1l (g=1):
Ifg=1,thene (W) =e(R)+e(S) forall W e W, g s. This gives

0 (qup;e(R)pl;E(S)) 9] (E (WI,R,S)) =0 (Nflp;ve(R)pge(S)) 19) (pi](R)p;/(S)>

- (N_l) .
Case (g = p):
If ¢ = p, then B (Wq,R’S) =0 unless R = S. In that case, the “variance case”, we
have that e (W) = p since W = R = S. This gives

0 (N—qp,;ze“”) 0(E(W,x))=0 (N_I’,o;,ze(R)) ) (p;(R))

=0 (N”’p{,e(R)) :

If R is a p-cycle, then p = e (R), yielding the simplification O (N_”pg,e(R)> =
0 (1)

If R is a tree, then e (R) = p — 1, yielding the simplification O (N—p p;f“”) =
0 (N_lk;,(p_l))
Case (1 <g < p):

Forg=2,...,p—1 wehave thate (W) =¢(R) +¢e(S) — (¢ — 1) if R and § are
both p-cycles so that

0 (qupl;em)p[;e(&) 0(0(Wy.r.s)) =0 (qupl;em)p;em)

<0 (p/eV<R>+e<s>—<q—1>>
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—o (N )

S1,-g-D
=0 (N7h).

Whereas we have that e (W) > e (R) + e (S) — (¢ — 1) if R and S are both trees, or
one is a tree and the other a p-cycle, so that

g —e(R) —e(S - —e(R) _—e(S
0 (N que( )pNe( )) 0 (d (Wq,R,S)) 0 (N q,O e( ),0 e( ))
> 0( e(R)+e($)—(g— ])>

-G
=0 (N7Y).

Proof of Theorem 3
Without loss of generality set i = 1. By the definition of degree we have that

m

N
]E[Dﬁ] =E ZDU )
j=2

the multinomial theorem allows us to write the term inside the expectation above as

m

N
3] I o PR | L

QttgN=m

where ( Since Dj; is binary D = Dy; for all g; =

m ) _
42,93, 9N/ T q2! q% q;v‘
1,2,...,m and one when g; = 0. This implies .that. ]_[;/:2 Dlj = Dyj X -+ % D.ljk
for Dyj,, D1j,, ..., D1j, the set of 1 <k < m link indicators with g; > 1. Consider
agents ji, j2, ..., jk, with, say, gj; = p1,qj, = p2,...,q, = pk such that p € Py,
it follows that

qj p p
]_[ DY, =D{l x---x D{%. (127)
By the multinomial theorem the coefficient on (127) equals m'+'xm" but since

P Pr Py Py .
Dlux xDllk_Dljlx-~~xDljk_D1“x~-~xD1]k

for any p, p* € Py m, the coefficient on Dy}, x --- x Dy, after combining identical
. m! . . .
terms in (126) equals Zpepm IEESTIE Putting these pieces together yields

S m!
8 - ol w1 DEEEEY ..
D+]_k2:; pG;k_mpl!X.“ka! E 1<Z</kD’Jl XDljk
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The expectations of the summands in ) Djj, x -+ x Djj, are all identical

Jr<-<Jk
with cardinality (", ). The assertion follows.
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