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3. A CLARIFICATION ON GROUP INTERACTIONS

Most existing studies of peer effects assume that peer groups
partition the sample, as in Manski (1993). This is an important
special case with specific features and properties. Goldsmith-
Pinkham and Imbens note that under group interactions GG =
G. In this case, Proposition 1 in Bramoullé, Djebbari, and
Fortin (2009) confirms Manski (1993)’s earlier result. The
linear-in-means model is not identified because of the reflection
problem.

However, the property that GG = G only holds when the
mean is inclusive and is computed over everyone in the peer
group including i. Assuming that an individual is one of his
own peers seems a bit strange, and applied researchers typically
consider exclusive means, where the average is computed over
everyone in the peer group except i. As it turns out, this minor
distinction has key implications for identification. Lee (2007)
show that a linear-in-exclusive means model with group fixed
effects is generally identified if there is variation in group sizes.
Boucher et al. (in press) provide the first empirical application
of this result and clarified the intuition behind identification.
In essence, identification relies on mechanical effects. Better
students have worse peers; this reduces the dispersion in out-
comes, and this dispersion reduction decreases with group size
at a decreasing rate. These mechanical effects hold in nonlinear
models as well. Given the paucity of network data and the im-
portance of the issue, I think that this idea deserves to be further
investigated.

4. WHAT IF THE OUTCOME ALSO AFFECTS
THE NETWORK?

To conclude, let me highlight a limitation of Goldsmith-
Pinkham and Imbens’ model, which is common to all studies
on the topic. Here, outcome at t is affected by the network at

t but the network at t is not affected by outcome at t. This
asymmetry may not hold in reality, and the way social links are
formed during period t may well be affected by the outcome
of interest. To capture this possibility, we would need to de-
velop an econometric model with simultaneous determination
of outcome and links. This would undoubtedly raise interesting
econometric challenges.
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Comment

Bryan S. GRAHAM
Department of Economics, University of California, Berkeley, CA 94720, and NBER (bgraham@econ.berkeley.edu)

Consider a group of three, potentially connected, individuals
(i = 1, 2, 3). Available is a large random sample of such groups.
For each group sampled, we observe all social ties among its con-
stituent members in each t = 0, 1, 2, 3 periods. Let Dijt = 1 if
individual i is “friends” (i.e., connected) with individual j in pe-
riod t and zero otherwise. Ties are undirected so that Dij = Dji

for i �= j . We rule out self-ties so that Dii = 0. The network ad-

These comments were prepared for the Journal of Business and Economic
Statistics Invited Address delivered by Guido Imbens on January 7th at the 2012
annual meeting of the American Economic Association. I am grateful to Kei
Hirano and Jonathan Wright, in their capacity as coeditors, for the opportunity
to comment on Paul Goldsmith-Pinkham and Guido Imbens’ article.

jacency matrix in period t is denoted by Dt with typical element
Dijt . The sampling process asymptotically reveals

f (d3, d2, d1, d0) = Pr(D3 = d3, D2 = d2, D1 = d1, D0 = d0).

Let Fijt = 1 if i and j have any friends in common during
period t and zero otherwise. For example, if i and k, as well as
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j and k, are connected in period t, then i and j will share the
common friend k such that Fijt = 1. Note that i and j need not
be direct friends themselves.

Let νi and ξi be individual-specific, time invariant, la-
tent variables. The latent social distance between individu-
als i and j is measured by the distance function g(ξi, ξj ).
This distance function (i) takes a value of zero if ξi = ξj ,
(ii) is symmetric in its arguments, and (iii) is increasing in
|ξi − ξj |. Let the pair-specific unobserved heterogeneity term
Aij = νi + νj − g(ξi, ξj ) = Aji.

Let 1(·) denote the indicator function; individuals i and j form
a link in periods t = 1,2,3 according to the rule

Dijt = 1(α + βDijt−1 + γFijt−1 + Aij − Uijt > 0). (1)

The term inside the indicator function in (1) is the net social sur-
plus associated with a link between i and j. Agents form a link if
the net utility from doing so is positive. Goldsmith-Pinkham and
Imbens (2013) model utility at the individual level and require
positivity of both candidate partner utilities in order for a link
to form. If utility is transferable, rule (1) seems reasonable (see
Graham 2011). When utility is nontransferable, the approach of
Goldsmith-Pinkham and Imbens is most appropriate.

The match-by-period specific utility shock, Uijt , is indepen-
dently and identically distributed across pairs and over time with
distribution function F (u). This distribution function may vary
arbitrarily with A = (A12, A13, A23)′ , but I suppress any such
dependence in what follows.1

An important feature of (1) is that it is backward-looking. This
eliminates contemporaneous feedback, which can complicate
identification (see Manski 1993). While i and j’s decision to
link or not will be influenced by the past link history of, say,
agent k, it will not be influenced by any link decisions involving
agent k in the current period.

Model (1) incorporates four types of network dependen-
cies emphasized in prior research (see Snijders 2011). First,
the −g(ξi, ξj ) component of Aij in (1) increases the probabil-
ity of ties across similar individuals. All other things equal,
agents will assortatively match on ξj . Call this effect homophily
(McPherson, Smith-Lovin, and Cook 2001; Jackson 2008).
Goldsmith-Pinkham and Imbens (Section 7) choose g(ξi, ξj ) =
αξ |ξi − ξj | for their empirical model of network formation. Sec-
ond, the presence of νi and νj in Aij allows for degree hetero-
geneity (see Krivitsky et al. 2009). If νi is high, then the net
surplus associated with any match involving i will tend to be
high (e.g., i might be a “good friend” generically). Goldsmith-
Pinkham and Imbens do not incorporate degree heterogeneity
into their model, but such heterogeneity appears to be an impor-
tant feature of real world networks. Third the presence of Fijt−1

in (1) implies a taste for transitivity in link formation or “triadic
closure.” Specifically a link between i and j in the current period
is, all things equal, more likely if they shared a common friend
in the prior period. The strength of transitivity in link formation
is indexed by the parameter γ . Finally, the parameter β captures

1More precisely each sampled network may have its own distribution for Uijt .
However, the assumption that Uijt is independently and identically distributed
across potential ties and over time within a network is essential.

state-dependence in ties: i and j are more likely to be friends in
period t if they were friends in period t − 1.

Discriminating between homophily/degree heterogeneity and
transitivity in network formation is scientifically interesting and
important from the perspective of the policymaker. To moti-
vate this assertion, consider the following stylized example.
Let groups correspond to schools and ξi an index of socioeco-
nomic background. Due to the sorting of families across neigh-
borhoods, the distribution of ξi within schools is likely to be
considerably more compressed than that between schools. Con-
sequently, we may observe, for reasons of homophily, a large
number of triangles (i.e., networks where agents 1, 2, and 3 are
all connected) across our sample of schools. A preponderance of
triangles may occur even in the absence of any structural taste for
transitivity in links. The structural source of clustering is never-
theless policy-relevant. In the presence of transitivity, a teacher
or principle may be able to alter the network structure within
a school by facilitating tie-formation or tie-dissolution across a
small number of students.2 In the absence of a taste for transitiv-
ity, such manipulations may be much more difficult to engineer.

While the homophily versus transitivity identification prob-
lem has been informally articulated in the literature on network
formation (e.g., Goodreau, Kitts, and Morris 2009; Kitts and
Huang 2011; Miyauchi 2012), I am aware of no systematic
analysis of it.

The joint density attached to a specific realization of a se-
quence of network structures and social distances is given by

f (d3, d2, d1, d0, a)

=
3∏

t=1

Pr (Dt = dt | Dt−1 = dt−1, A = a) π (d0, a)

=
3∏

t=1

∏
{i<j,i �=k,j �=k}

{F (α + βdijt−1 + γ dikt−1djkt−1 + aij )dijt

× [1 − F (α + βdijt−1 + γ dikt−1djkt−1 + aij )]1−dijt }
×π (d0, a), (2)

where π (d0, a) is the joint density of the initial network struc-
ture and vector of pair-specific heterogeneity terms (I have used
the fact that Fijt = DiktDjkt ). Goldsmith-Pinkham and Imbens
assume independence of D0 and A. If the network under con-
sideration began prior to the initial period of observation this
assumption seems implausible. The link rule given in (1) induces
dependence between network structure and A in later periods.
The issues involved are related to those of the initial condi-
tions problem in dynamic binary choice panel data models (e.g.,
Heckman 1981a,b,c). Goldsmith-Pinkham and Imbens further
model the ξi as independent draws from a two-mass-point dis-
tribution with known mixing probabilities. This assumption in
turn induces a distribution for A. While their approach does
result in some dependence across the elements of A, it is of
a highly structured form. The stylized example given above

2In the education context, the manipulation of social cliques may be of special
interest.
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suggests that the dependence structure across the elements of A
may be quite complex.3 Experience drawn from the literature
on discriminating between state dependence and heterogeneity
using panel data suggests that Goldsmith-Pinkham and Imbens’
modeling assumptions lead them to overstate the role of past net-
work structure in explaining current link formation. This is, of
course, only a conjecture. It nevertheless motivates the question
of what can be learned without imposing strong assumptions on
the form of π (d0, a)?

Here I wish to formally study identification of β and, espe-
cially, γ . In contrast to Goldsmith-Pinkham and Imbens my
treatment will be “fixed effects” in nature—the joint distri-
bution of D0 and A will be left unrestricted. Link decisions
across pairs of agents are conditionally independent given the
network structure in the prior period and the unobserved vec-
tor of latent social distances A. However, unconditional on A,
the dependence across different link decisions is allowed to be
quite complex. There is some connection between my question
and that of identifying state dependence using panel data (e.g.,
Chamberlain 1985, 1995; Hahn 2001). However the analogy
is incomplete; a network structure is induced by the intercon-
nected decisions of multiple agents. Modeling a sequence of
networks is considerably harder than modeling a sequence of
discrete decisions made by a single agent.

As a preliminary analysis, I will study what can be learned
by the observed sequence of link decisions between agents i
and j conditional on the observed sequence of links between the
remaining agents. The goal is to find features of (2) that do not
depend on A.

Without loss of generality set i = 1 and j = 3 and consider
what can be learned from the relative frequency of observing a
specific member of the set of network histories

E01 =

⎧⎪⎨
⎪⎩D0 =

⎛
⎜⎝

0 D120 D130

D120 0 D230

D130 D230 0

⎞
⎟⎠,

D1 =
⎛
⎝ 0 D121 0

D121 0 D231

0 D231 0

⎞
⎠ ,

D2 =

⎛
⎜⎝

0 D121 1

D121 0 D231

1 D231 0

⎞
⎟⎠ ,

D3 =

⎛
⎜⎝

0 D121 D133

D121 0 D231

D133 D231 0

⎞
⎟⎠

⎫⎪⎬
⎪⎭

versus a member of the set

E10 =

⎧⎪⎨
⎪⎩D0 =

⎛
⎜⎝

0 D120 D130

D120 0 D230

D130 D230 0

⎞
⎟⎠ ,

3Specifically, cross-group sorting suggests that ξ1, ξ2, and ξ3 covary, which, in
turn, induces dependence across the elements of A.

D1 =

⎛
⎜⎝

0 D121 1

D121 0 D231

1 D231 0

⎞
⎟⎠ ,

D2 =

⎛
⎜⎝

0 D121 0

D121 0 D231

0 D231 0

⎞
⎟⎠ ,

D3 =

⎛
⎜⎝

0 D121 D133

D121 0 D231

D133 D231 0

⎞
⎟⎠

⎫⎪⎬
⎪⎭ .

The networks contained in the sets E01 and E10 have two key
features. First, any (i, k) = (1, 2) and (k, j ) = (2, 3) ties are
stable across periods 1, 2, and 3. If either agent i or j is linked to
k in period 1, they are also linked in periods 2 and 3. Likewise,
the absence of a period 1 link is associated with an absence of a
period 2 and 3 link. The (i, k) and (k, j ) pairs may switch their
link status between periods 0 and 1, and it is essential that this
occurs in some sampled networks, but they do not revise their
link status in subsequent periods. This last feature of E01 and
E10 ensures variation over time in the opportunity for agents i
and j to engineer triadic closure by forming a link. We can say
that the (i, j ) is embedded in a stable neighborhood. Second,
the sequence of (i, j ) links differs across E01 and E10. In the
first set of histories, (i, j ) are linked in period 2, but not 1, while
in the second this ordering is reversed. We require that agents i
and j switch their link status between periods 1 and 2.

The sets E01 and E10 were selected by a combination
of educated guessing, inspired by the work of Cox (1958),
Chamberlain (1985), and Honoré and Kyriazidou (2000) on
the identification of dynamic binary choice panel data models,
and trial and error. Let D = (D3, D2, D1, D0) denote the full se-
quence of network structures and e01 a specific element of the
set E01 (and similarly for e10). A straightforward, albeit tedious,
calculation gives (see the Appendix)

Pr (D = e01| A = a)

Pr (D = e10| A = a)
= 1 − F (α + βd130 + γ d120d230 + a13)

F (α + βd130 + γ d120d230 + a13)

× F (α + βd133 + γ d121d231 + a13)

1 − F (α + βd133 + γ d121d231 + a13)
.

Monotonicity of F then implies that (see Manski 1987; Honoré
and Kyriazidou 2000; Graham 2011, sec. 4.3):

sgn (Pr (E01 = e01| a) − Pr (E10 = e10| a))

= sgn (β (d133 − d130) + γ (d121d231 − d120d230)) . (3)

By separately considering the subset of networks with, respec-
tively, d133 �= d130 and d121d231 = d120d230 and d133 = d130 and
d121d231 �= d120d230, we can show that the signs of β and γ are
separately identified. Consequently, the presence of transitivity
is identifiable without imposing any restrictions on the joint dis-
tribution of D0 and A. To my knowledge, this is a new result. In
ongoing work, I have shown that this result may be extended to
networks of arbitrary size (Graham 2012).

If we additionally assume that Uijt is logistically dis-
tributed, as in Goldsmith-Pinkham and Imbens (2013), we have
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Graham: Comment 269

identification up to scale with

Pr (D = e01| A = a, D ∈ {e01, e10})

= exp
(

β(d133−d130)+γ (d121d231−d120d230)
σ

)
1 + exp

(
β(d133−d130)+γ (d121d231−d120d230)

σ

) , (4)

where σ is the scale parameter for Uijt (typically normalized
to 1).

That, in the context of a simple dynamic model of network
formation, it is possible to discriminate between transitivity and
homophily/degree heterogeneity while leaving the joint dis-
tribution of D0 and A unrestricted is an encouraging result.
Goldsmith-Pinkham and Imbens make very strong assumptions
on this joint distribution and I suspect their conclusions may be
sensitive to them.

While I have presented a simple “fixed effect” identification
result, I remain sympathetic to the “(correlated) random effects”
modeling strategy of Goldsmith-Pinkham and Imbens (i.e., an
approach that does impose restrictions on the joint distribution
of D0 and A). As in nonlinear panel data analysis, the two ap-
proaches are complementary. Goldsmith-Pinkham and Imben’s
application, however, indicates that working with the integrated
likelihood is numerically challenging. Some of their choices
regarding the joint distribution of D0 and A appear to be driven
by computational concerns. It would be useful to construct par-
simonious parametric models for this distribution that incorpo-
rate richer forms of dependence. Of course, continued study of
“fixed effects” approaches is also warranted.

APPENDIX

We begin by evaluating (2) at E01 = e01 and E10 = e10. We
get

Pr (D = e01| A = a)

= π (d0, a)

×F (α + βd120 + γ d130d230 + a12)d121

× [1 − F (α + βd120 + γ d130d230 + a12)]1−d121

× [1 − F (α + βd130 + γ d120d230 + a13)]

×F (α + βd230 + γ d120d130 + a23)d231

× [1 − F (α + βd230 + γ d120d130 + a23)]1−d231

×F (α + βd121 + a12)d121 [1 − F (α + βd121 + a12)]1−d121

×F (α + γ d121d231 + a13)

×F (α + βd231 + a23)d231 [1 − F (α + βd231 + a23)]1−d231

×F (α + βd121 + γ d231 + a12)d121

× [1 − F (α + βd121 + γ d231 + a12)]1−d121

×F (α + β + γ d121d231 + a13)d133

× [1 − F (α + β + γ d121d231 + a13)]1−d133

×F (α + βd231 + γ d121 + a23)d231

× [1 − F (α + βd231 + γ d121 + a23)]1−d231

and

Pr (D = e10| A = a)

= π (d0, a)

×F (α + βd120 + γ d130d230 + a12)d121

× [1 − F (α + βd120 + γ d130d230 + a12)]1−d121

×F (α + βd130 + γ d120d230 + a13)

×F (α + βd230 + γ d120d130 + a23)d231

× [1 − F (α + βd230 + γ d120d130 + a23)]1−d231

×F (α + βd121 + γ d231 + a12)d121

× [1 − F (α + βd121 + γ d231 + a12)]1−d121

× [1 − F (α + β + γ d121d231 + a13)]

×F (α + βd231 + γ d121 + a23)d231

× [1 − F (α + βd231 + γ d121 + a23)]1−d231

×F (α + βd121 + a12)d121 [1 − F (α + βd121 + a12)]1−d121

×F (α + γ d121d231 + a13)d133

× [1 − F (α + γ d121d231 + a13)]1−d133

×F (α + βd231 + a23)d231 [1 − F (α + βd231 + a23)]1−d231 .

Taking the ratio of these two probabilities yields, after some
obvious cancellations:

Pr (D = e01| A = a)

Pr (D = e10| A = a)

= 1 − F (α + βd130 + γ d120d230 + a13)

F (α + βd130 + γ d120d230 + a13)

× F (α + γ d121d231 + a13)

1 − F (α + β + γ d121d231 + a13)

×{F (α + β + γ d121d231 + a13)d133

× [1 − F (α + β + γ d121d231 + a13)]1−d133}
/ {F (α + γ d121d231 + a13)d133

× [1 − F (α + γ d121d231 + a13)]1−d133}.
Now observe that if d133 = 1, we have F (α + β + γ d121d231

+ a13)d133 = F (α + βd133 + γ d121d231 + a13) and 1 − F (α +
β + γ d121d231 + a13) = 1 − F (α + βd133 + γ d121d231 + a13)
which implies the simplification given immediately prior
to Equation (3) of the main text. Similarly if d133 = 0,
we have [1 − F (α + γ d121d231 + a13)]1−d133 = [1 − F (α +
βd133 + γ d121d231 + a13)] and F (α + γ d121d231 + a13) =
F (α + βd133 + γ d121d231 + a13) which gives the same result.

In the logistic case, we have

1−F (α+βd130+γ d120d230+a13)
F (α+βd130+γ d120d230+a13)

1−F (α+βd133+γ d121d231+a13)
F (α+βd133+γ d121d231+a13)

= exp

(
β (d133 − d130) + γ (d121d231 − d120d230)

σ

)
,

from which (4) follows directly.
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1. INTRODUCTION

Understanding peer effects is of first-order importance in a
range of settings including education, labor markets, crime,
voting, and consumer behavior. However, although casual in-
trospection and some field experiments (e.g., Duflo and Saez
2003; Centola 2010) suggest that the influence of friends and ac-
quaintances on behavior can be substantial, there are formidable
challenges in establishing peer effects using (increasingly avail-
able) purely observational data that couple behaviors with social
relationships.

The challenges in establishing that peer effects are truly
present include:

• Identification: A model of peer effects must be specified
in a manner such that the channels through which peers
influence one’s behavior can be identified as well as dis-
tinguished from other sources of influence (Manski 1993;
Bramoullé et al. 2009; Blume et al. 2011).

• Endogenous networks and homophily: Linked individuals
are likely to be similar not only in terms of observed char-
acteristics but also in terms of unobserved characteristics
that could influence behavior. By failing to account for sim-
ilarities in (unobserved) characteristics, similar behaviors
might mistakenly be attributed to peer influence when they
simply result due to similar characteristics (Aral et al. 2009;
Jackson 2008). This is complicated by the richness of the
set of possible characteristics that could matter, which not

only involve innate or exogenous ones that might influence
preferences, but also correlated ones that include exposure
to common stimuli (Manski 1993).

• Computation: The possible set of networks of peer relation-
ships is generally exponential in the size of the population
and so having a model that allows for endogenous peer re-
lationships can face significant computational challenges
(Chandrasekhar and Jackson 2012).

• Measurement error: Relationships can be difficult to ob-
serve and quantify. This can reduce the power of a test,
especially with self-reported relationships that are easily
unobserved (Chandrasekhar and Lewis 2011). In particu-
lar, this applies to data with caps on the numbers of friends
that can be reported as in the Add Health dataset.

• Misspecification: Specifying the appropriate set of peers,
which can be time- and context-dependent, is difficult, as
in correctly specifying the ways in which they influence
each other, including possible heterogeneity among a given
individual’s friends.

The difficulties of convincingly demonstrating peer effects are
complicated by the fact that the biases introduced by the various
issues mentioned above can push in different directions. For
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