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Consider two heterogenous populations of agents who, when matched, jointly produce an output, Y . For
example, teachers and classrooms of students together produce achievement, parents raise children, whose
life outcomes vary in adulthood, assembly plant managers and workers produce a certain number of cars
per month, and lieutenants and their platoons vary in unit effectiveness. LetW ∈ W = {w1, . . . ,wJ} and
X ∈ X = {x1, . . . , xK} denote agent types in the two populations. Consider the following matching mech-
anism: take a random draw from the W = w j subgroup of the first population and match her with an
independent random draw from the X = xk subgroup of the second population. Let β(w j, xk ), the average
match function (AMF), denote the expected output associated with this match. We show that (i) the AMF is
identified when matching is conditionally exogenous, (ii) conditionally exogenous matching is compatible
with a pairwise stable aggregate matching equilibrium under specific informational assumptions, and (iii)
we calculate the AMF’s semiparametric efficiency bound.

KEY WORDS: Average match function; Causal inference; Choo–Siow model; Matching; Semiparamet-
ric efficiency.

There are two populations, say teachers and classrooms of
students. (We maintain this running example for much of what
follows for expository reasons, but our results are not restricted
to this case. See Boyd et al. (2013) for empirical context and
Graham (2011a) for other empirical examples and references.)
Let W ∈ W = {w1, . . . ,wJ} denote the observable type of a
teacher and U ∈ U unobserved teacher attributes.1 The dimen-
sion of U is unrestricted. The J support points of W may
encode, for example, different unique combinations of years
of teaching experience, levels of education, race, and gender;
U corresponds to unobserved dimensions of teacher quality.
Teachers are heterogenous. Let R denote a vector of observable
“proxies” for U ; R may have both discrete and continuous
components. We clarify the properties of R further below. All
diversity in the population of teachers is captured by the triple
(W,R,U ). We index a random draw from this population by the
subscript i, such that (Wi,Ri,Ui) corresponds to the ith random

1Inwhat follows random variables are denoted by capital Roman letters, specific
realizations by lower case Roman letters, and their support by blackboard bold
Roman letters. That is, Y , y, and Y, respectively, denote a generic random draw
of, a specific value of, and the support of, Y .

draw (teacher). A generic random draw is denoted by (W,R,U )
(i.e., subscripts omitted).
Let X ∈ X = {x1, . . . , xK} be the observable type of a class-

room and V ∈ V unobserved classroom attributes. The dimen-
sion of V is unrestricted. The K types of classroom could enu-
merate different unique combinations of classroom size and/or
student gender/ethnicity mixes. Let S denote an observed vector
of proxies for V . We index a random draw from the population
of classrooms by the superscript h, such that (Xh, Sh,Vh) equals
measured and unmeasured characteristics of the hth random
draw (classroom). The sub- and superscript notation emphasizes
the two-population aspect of our setup.
Teachers and classrooms of students are matched (i.e., paired

with one another) through some process. In this article, we only
consider one-to-one matching. Restrictions on this process will
be imposed in Section 3. Once paired they jointly produce the
output, Y ∈ Y ⊂ R, say, student achievement.
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Associated with each teacher–classroom pair is a potential
or conjectural output (Holland 1986; Manski 2007; Imbens and
Rubin 2015). Let Yh(i) denote the potential output when teacher
i matches with classroom h; in production function form,

Yh (i) = g
(
Wi,X

h,Ui,V
h
)
. (1)

Now consider two teachers, i and i′, both of typeWi =Wi′ = w.
A key feature of our setup is that there is no representation of
the potential outcome for classroom h in terms of its assigned
teacher’s type, w, alone. This follows because, in general,
Ui �= Ui′ and hence

Yh(i) = g(w,Xh,Ui,V
h) �= g(w,Xh,Ui′ ,V

h) = Yh(i
′),

due to heterogeneity in unobserved teacher quality. Conse-
quently, we cannot writeYh(i) = Yh(w). Although teachers i and
i′ may be of the same observed type,Wi =Wi′ = w, they would
typically differ in terms of their unobserved “quality,”Ui �= Ui′ .

Equation (1) is a production function with two heterogenous
inputs,W and X . This contrasts with the standard single agent
production function, where output across heterogenous firms
varies with the level of a homogenous input (e.g., Chamberlain
1984; Griliches and Mairesse 1996; Olley and Pakes 1996). If
we setUi = ū for all i, we recover this familiar single agent prob-
lem. Such a restriction would ensure that, conditional on their
type, teachers are a homogenous input. We could then write
a classroom’s conjectural output as a function of its assigned
teacher type alone:

Yh(i) = Yh(w) = g(w,Xh,Vh) = g(w,Xh, ū,Vh). (2)

In (2) achievement (output) across heterogenous classrooms
(firms) is a function of the level of the homogenous input,
teacher type (capital), Wi = w. In this article, we instead con-
sider the nonstandard case, where observed output is generated
according to (1). Loosely speaking, both the “firm” (classroom)
and the “input” (teacher) are heterogenous in our setup. This
raises new issues.2

Let h = m(i) equal the classroom assigned to teacher i under
the status quo (i.e., observed) matching (so that m−1(h) = i).
For simplicity, we assume that (i) the populations of teachers
and classrooms are the same size and (ii) that all classrooms are
assigned a teacher in the status quo matching. Observed output
is therefore given by

Yi = g(Wi,X
m(i),Ui,V

m(i) ). (3)

In what follows we write Yi = Ym(i)(i), Xi = Xm(i), and
Vi = Vm(i) to simplify the notation. Put differently, the i sub-
script will be used to index both teachers and teacher–classroom
matches (the latter in the status quo assignment only). Let

2If we consider classroom h’s “treatment” to be the assignment to a specific
teacher, then the fact that classroom h has a different potential outcome when
assigned teacher i vs. teacher i′ is not a violation of SUTVA (see Imbens and
Rubin 2015). However, there is a violation of SUTVA if, instead, we consider
the type of i as the treatment (e.g., assignment to an inexperienced vs. expe-
rienced teacher). This follows, as explained in the main text, because teachers
of the same observed type may vary in terms of unobserved, output-effecting,
attributes. Another violation of SUTVA implicit in our setup is that of no treat-
ment interference. Interference in our setting arises because if classroom h is
assigned to teacher i, then classroom h′ cannot be assigned to teacher i; match-
ing is one-to-one and rivalrous. Graham (2011a, Section 5) anticipated some of
the discussion which follows.

{Zi}Ni=1 denote a random sample of size N, from the status quo
distribution of matches, of Zi = (Xi,Wi,R′

i, S
′
i,Yi)

′.
The econometrician seeks to use this random sample to make

inferences about average output across different counterfac-
tual reallocations of teachers to classrooms. Specifically, we
consider the following thought experiment. A social planner
takes a random draw from the subpopulation of type Wi = w
teachers. She then takes an independent random draw from
the subpopulation of type Xh = x classrooms. The expected
outcome associated with pairing together these two draws is

β (w, x)
def≡

∫ ∫
g (w, x, u, v ) fU |W (u| w) f V |X (v| x) dudv .

(4)
We call (4) the average match function (AMF; see Graham
2011a). The AMF is a building block for conducting inference
on counterfactual reallocations. Observe that we make no pre-
sumption of independence betweenW and U or X and V . The
distribution of teacher ability, U , may vary systematically with
observed years of teacher experience,W . Because reallocations
leave the joint distributions of (Wi,Ui) and (Xh,Vh) unchanged,
FU |W and FV |X are the correct distributions to integrate over
in (4).
In contrast, dependence between U and V , given

(W = w,X = x), generates a wedge between observed average
output under the status quo matching, E[Y |W = w,X = x], and
the AMF, β(w, x), due to matching on unobservables. Say we
wish to learn about the average match output when experienced
teachers, Wi = w, are assigned to classrooms with low prior
achievement, Xh = x. If, in the status quo matching, among
experienced teachers, those with high ability, Ui, are matched
to high ability, Vh, classrooms (among those with the low prior
achievement), then there will be dependence between U and
V given (W = w,X = x). Therefore, the observed average
outcome does not equal the causal match effect β(w, x), but
an upwardly biased estimate of it. This bias is induced by the
(positive) correlation ofU and V conditional onW and X . This
matching bias occurs if conditional exogeneity fails.
The AMF is defined with reference to a hypothetical match-

ing scheme which rules out such dependence by construction.
This is analogous to the conceptual role played by random
assignment in the program evaluation literature.

1. MAIN CONTRIBUTIONS

In this article, we present three results. First, we show that
β(w, x) is identified under a conditionally exogenous matching
assumption. Our assumption is a multi-agent generalization of
the “selection on observables” or “unconfoundedness” assump-
tion familiar from the program evaluation literature (e.g.,
Heckman, Smith, and Clements 1997; Imbens 2004). Second,
we show that, under certain assumptions about agents’ infor-
mation sets, our conditionally exogenous matching assumption
is consistent with pairwise stability in an aggregate transfer-
able utility (TU) matching market of the type introduced by
Choo and Siow (2006a,b) and recently extended by a number
of authors (e.g., Graham 2013; Dupuy and Galichon 2014;
Chiappori, Salanié, and Weiss 2015; Galichon and Salanié
2015). (See Dagsvik 2000; Galichon and Hsieh 2015; Menzel
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2015 for related contributions to nontransferable utility (NTU)
matching problems.) This result provides guidance to prac-
titioners interested in applying our results outside of quasi-
experimental settings. In particular, it suggests what types of
variables should be included in the proxy vectors R and S.
Third, we characterize the semiparametric efficiency bound
for β(w, x). The bound is complex, involving several integral
equations, but nevertheless provides insights useful for efficient
estimation.
In more specific forms than (4), the average match func-

tion (AMF) was introduced by Graham, Imbens and Ridder
(2007, 2014) and Graham (2011a). The first two articles con-
sider estimation of the AMF under various forms of random
assignment/matching and more restrictive unobserved het-
erogeneity structures than allowed for here. The last of these
articles does consider covariate adjustment and also provides
a preliminary identification result (Graham 2011a, Proposition
3.2). This result relies on a “conditional inclusive definition
of types” assumption (p. 980). Under doubly randomized
assignments—as defined below—the AMF of Graham (2011a)
and the one presented here coincide. Under conditional double
randomization, the two identification results diverge. Evidently
Assumption 3.2 of Graham (2011a) is consequential; we fully
dispense with it here. The key technical tool for doing so is
Lemma 1. These differences/improvements reflect our own
improved understanding of matching models over time.3

This article is also related to Graham, Imbens, and Ridder
(2014), which presented explicit estimators for various real-
location effects. In that article (i) teacher and classroom types
were assumed continuously valued, (ii) methods for covariate
adjustment were not presented (limiting the included formal
results to experimental settings), and (iii) the heterogenous
two-agent aspect of the problem was not explicitly developed.
Finally, no analysis of semiparametric efficiency was under-
taken. Our results are also related to the very large literature on
efficient covariate adjustment in program evaluation problems
(see Imbens and Wooldridge 2009 for a recent review). While
covariate adjustment is a well-studied problem in single agent
models, going back at least to the work of Yule (1897) on the
causes of pauperism in late 19th century England, we are aware
of no prior research on covariate adjustment for multi-agent
models beyond that discussed above.

2. NOTATION

In what follows, random variables are denoted by capi-
tal Roman letters, specific realizations by lower case Roman

3The “inclusive definition of type” assumption imposes independence of, in the
current notation,Wi andUi and also of Xh and Vh. This assumption, which also
features in Graham, Imbens, and Ridder (2010), is not imposed here. This dif-
ference is consequential when controlling for additional covariates. This can
be seen by comparing the form of the identification result in Graham (2011a,
Proposition 3.2) with the one outlined below. Here, identification involves aver-
aging over the product of two conditional distributions, not two marginals as in
Graham (2011a). Analog estimators based on the two results will numerically
differ. Graham (2011a) did not derive a semiparametric efficiency bound for his
estimand, but it too will differ from the one outlined here. We prefer the set of
assumptions maintained here (which are weaker).

letters, and their support by blackboard bold Roman letters. That
is, Y , y, and Y, respectively, denote a generic random draw of,
a specific value of, and the support of, Y . The joint density of
X and Y is denoted by fX,Y (x, y) or f (x, y). The latter represen-
tation is only used when doing so causes no ambiguity. Similar
conventions are followed for conditional densities.

3. IDENTIFICATION

We assume that the econometrician is able to collect a random
sample of output measurements and agent observables from a
status quo population of matches.

Assumption 1 (Random Sampling). Let Zi = (Xi,Wi,R′
i,

S′
i,Yi); {Zi}Ni=1 is a random sequence drawn from the status quo
population of matches with distribution function F .

Our key identifying assumption restricts the structure of the
status quo matching.

Assumption 2 (Conditionally Exogenous Matching).

(X,V, S) ⊥ U |W = w,R = r, (W,U,R) ⊥ V |X = x, S = s

for all (w, r) ∈ W × R and all (x, s) ∈ X × S.

Assumption 2 implies that, conditional on teacher observed
attributes (W,R), her unobserved quality, U , has no predic-
tive power for classroom characteristics. Likewise, conditional
on observed classroom attributes (X, S), unobserved classroom
attributes, V , have no predictive power for teacher characteris-
tics. In Section 4, we show that Assumption 2 is consistent with a
Choo–Siow aggregate matching market equilibrium under spe-
cific assumptions about agents’ prematch information sets.
To better understand Assumption 2, we first prove the follow-

ing factorization lemma. This lemma features in the proof of our
main identification result, Proposition 1.

Lemma 1 (Factorization). Under Assumption 2

fU,V |W,X,R,S (u, v| w, x, r, s) = fU |W,R (u| w, r) f V |X,S (v| x, s) .
Proof. The first part of Assumption 2 gives the joint density

factorization

fW,X,R,S,U,V (w, x, r, s, u, v )

= f X,V,S|W,R (x, v, s| w, r) fU |W,R (u| w, r) fW,R (w, r) ,
while the second part gives

fW,X,R,S,U,V (w, x, r, s, u, v )

= fW,U,R|X,S (w, u, r| x, s) f V |X,S (v| x, s) fX,S (x, s) .
Conditioning on all observables therefore gives the pair of
equalities

fU,V |W,X,R,S (u, v| w, x, r, s)
= f V |W,X,R,S (v| w, x, r, s) fU |W,R (u| w, r)
= f V |X,S (v| x, s) fU |W,X,R,S (u| w, x, r, s) .

Integrating over u then gives

f V |W,X,R,S (v| w, x, r, s) = f V |X,S (v| x, s) , (5)
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which after substitution gives

fU,V |W,X,R,S (u, v| w, x, r, s) = fU |W,R (u| w, r) f V |X,S (v| x, s)
as claimed. �

Equation (5), in the proof to Lemma 1, highlights a key
implication of Assumption 2: conditional on a classroom’s
observed attributes, X and S, the observed attributes of their
assigned teacher, W and R, do not predict unobserved class-
room attributes, V . Conversely, conditional onW and R, class-
room characteristics, X and S, do not predict unobserved teacher
attributes, U . Assumption 2 implies that withinW = w,R = r
by X = x, S = s cells, there is no matching on unobservables
between teachers and classrooms. (Graham 2011a, equation (8))
instead studies assignments where fU,V |W,X,R,S(u, v|w, x, r, s) =
fU |R(u|r) fV |S(v|s), which is stronger than maintained here.)
Note that

fU,V |W,X (u, v| w, x) =
∫ ∫

fU |W,R (u| w, r) f V |X,S (v| x, s)

× f R,S|W,X ( r, s|w, x) drds
�= fU |W (u| w) f V |X (v| x) , (6)

so that Assumption 2 does allow for matching on unobserv-
ables within the coarserW = w byX = x cells. However within
W = w,R = r byX = x, S = s cells matching is “as if” random.
We call this conditionally exogenous matching.
Assumption 2 may hold for two reasons. First, it can hold

by design. In that case, the researcher chooses a feasible joint
distribution for (W,X,R, S), but forms a (W,R) = (w, r)
to (X, S) = (x, s) match by taking a random draw from the
subpopulation of teachers homogenous in (W,R) = (w, r)
and matching her with an independent random draw from the
subpopulation of classrooms homogenous in (X, S) = (x, s).
This is a doubly randomized assignment scheme (see Graham
2008, 2011a). Note, as indicated by (6), this scheme does allow
for sorting on unobservables withinW = w by X = x cells. As
shown below, the presence of the proxies R and S allows the
researcher to “undo” this sorting to recover the AMF.
Second, Assumption 2 is also an equilibrium property of

a Choo and Siow (2006a,b) type aggregate matching market
(under certain restrictions on agents’ information sets). We
develop this result in Section 4.
Identification of β(w, x) also requires a support condition.

Assumption 3 (Support).
(i) If fS|X (s|x) fR|W (r|w) > 0, then fR,S|W,X (r, s|w, x) > 0,
(ii) πxw = Pr(W = w,X = x) > 0.

Note that, under part (ii) of Assumption 3, the reverse of the
implication stated in part (i) holds as well. Assumption 3 there-
fore requires that the support of fR,S|W,X (r, s|w, x) equals the
product of the supports of fR|W (r|w) and fS|X (s|x). Observe that
the set

S
feasible
RS (w, x) = {r, s : fR|W (r|w) fS|X (s|x) > 0}

equals the feasible joint support of R and S across the set of
W = w to X = x matches. This set contains all logically pos-
sible combinations of R = r and S = s that might be observed
in a W = w to X = x match. Identification requires that the

actual support

S
actual
RS (w, x) = {r, s : fR,S|W,X (r, s|w, x) > 0}

and the feasible one overlap.
It is useful to connect this assumption to the familiar overlap

condition found in the program evaluation literature. Doing so
also allows us to introduce some notation that will be used in
the efficiency bound calculation presented in Section 5. Under
Assumption 3, Bayes’ law gives

f R|W ( r| w) = pw (r) fR (r)

ρw

, f S|X ( s| x) = px (s) fS (s)

λx
,

f R,S|W,X ( r, s|w, x) = pwx (r, s) fR,S (r, s)

πwx
,

where we define the conditional probabilities

pw (r) = Pr (W = w|R = r)

px (s) = Pr (X = x| S = s)

pwx (r, s) = Pr (W = w,X = x|R = r, S = s) ,

and also the unconditional probabilities ρw = Pr(W = w),
λx = Pr(X = x), and πwx = Pr(W = w,X = x). (In certain
instances, we will also use the notation pj(r) = Pr(W =
w j|R = r), pk(s) = Pr(X = xk|S = s), and p jk(r, s) = Pr(W =
w j,X = xk|R = r, S = s) for j = 1, . . . , J and k = 1, . . . ,K.)
Under Assumption 3, we have

S
feasible
RS (w, x) = {r, s : pw (r) px (s) > 0} ,
S
actual
RS (w, x) = {r, s : pwx (r, s) > 0} . (7)

The equalities in (7) suggest the following reformulation of
Assumption 3:

Assumption 4 (Strong Overlap). pwx(r, s) ≥ κ > 0 for all
(r, s) such that pw(r)px(s) > 0.

As suggested by its label, Assumption 4, is related to the over-
lap assumption made in the program evaluation literature (e.g.,
Hahn 1998; Imbens 2004). It ensures that all logically possible
combinations of R and S that could be observed in aW = w to
X = x match are in fact observed in the set of status quo w-to-x
matches. It would be useful to develop tests, heuristic or formal,
for assessing Assumption 4 in practice.
Consider the mean regression of Y givenW,X,R, S

E [Y |W = w,X = x,R = r, S = s]
def≡ q (w, x, r, s) . (8)

Note that q(w, x, r, s) is a structural object under (1) and
Assumptions 1, 2, and 3. Specifically, the difference

q
(
w, x′, r, s′

) − q (w, x, r, s) ,

gives the expected change in output when a teacher with char-
acteristics (W,R) = (w, r) is assigned to a classroomwith char-
acteristics (X, S) = (x, s) instead of one with characteristics
(X, S) = (x′, s′).
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Our main identification result is

Proposition 1. (Identification) Under (1) and Assumptions
1, 2, and 3

β (w, x) = 1

ρwλx

∫∫
q (w, x, r, s) pw (r) px (s) fR (r) fS (s) drds

(9)

=
∫
s

∫
r
q (w, x, r, s) f R|W ( r| w) f S|X ( s| x) drds. (10)

Proof. First, observe that under Assumption 2, we have,
invoking Lemma 1,

q (w, x, r, s)

=
∫

v

∫
u
g (w, x, u, v ) fU,V |W,X,R,S (u, v| w, x, r, s) dudv

=
∫

v

∫
u
g (w, x, u, v ) fU |W,R (u| w, r) f V |X,S (v| x, s) dudv .

Second, fromBayes’ rule fR|W (r|w) = pw (r) fR(r)
ρw

and fS|X (s|x) =
px(s) fS (s)

λx
. This and the second equality above yields

1

ρwλx

∫
s

∫
r
q (w, x, r, s) pw (r) px (s) fR (r) fS (s) drds

=
∫
s

∫
r
q (w, x, r, s) f R|W ( r|w) f S|X ( s| x) drds

=
∫
s

∫
r

[∫
v

∫
u
g (w, x, u, v ) f U |W,R (u| w, r) f V |X,S ( v| x, s) dudv

]

× f R|W ( r| w) f S|X ( s| x) drds

=
∫
s

∫
r

∫
v

∫
u
g (w, x, u, v ) f U,R|W (u, r|w) f V,S|X ( v, s| x) dudrdvds

=
∫

v

∫
u
g (w, x, u, v ) f U |W (u| w) f V |X ( v| x) dudv

= β (w, x) .

Note that for (9) and (10) to be well-defined, we require
Assumption 3. Since all the components to the right of the equal-
ities in (9) and (10) are asymptotically revealed under random
sampling (Assumption 1), the result follows. �

We discuss some implications of Proposition 1 for estimation
after presenting its semiparametric efficiency bound in Section
5. A key implication of Proposition 1, useful for both estimation
and efficiency bound analysis, is the moment restriction

E

[
1

ρwλx

f (R) f (S)

f (R, S)

pw (R) px (S)

pwx (R, S)
TwxY − β (w, x)

]
= 0,

for Twx = 1 when a random draw from the status quo distribu-
tion ofmatches is of typeWi = w andXi = x and zero otherwise.

4. PAIRWISE STABILITY AND EXOGENEITY

In this section, we relate our exogenous matching condition
(Assumption 2) to the notion of pairwise stability in transferable
utility (TU) one-to-one matching problems (e.g., Shapley and
Shubik 1971; Becker 1973). Our point of departure is the aggre-
gate matching setup introduced by Choo and Siow (2006a,b).

In this framework, the econometrician observes the match fre-
quencies π jk = Pr(Wi = w j,Xm(i) = xk ) for j = 1, . . . , J and
k = 1, . . . ,K and, from this joint distribution of match types
and equilibrium restrictions, seeks to recover (features of) the
distribution of unobserved agent preferences.Match surplus and
transfers are unobserved.
We add to this setup the observable match output Yi. Match

output will generally covary with the match surplus agents’
actually care about, but it need not be coincident with it. For
example, the surplus associated with a specific marriage may
vary with (expected) child outcomes, but would generally not be
coincident with them. Our question is: under what restrictions
on agents’ preferences and information sets will the observed
matching be both (i) pairwise stable and (ii) satisfy Assump-
tion 2? Our conclusion is that Assumption 2 can hold in set-
tings where agents purposively choose match partners. More
constructively, our analysis provides guidance as to what types
of measures to include in the proxy variable vectors Ri and Sh.
Proposition 2 formalizes and generalizes the stylized analysis
for the K = J = 2 special case sketched in Graham, Imbens,
and Ridder (2014, sec. 3).

For what follows, maintaining the assumption of one-to-one
matching, it is pedagogically convenient to think of the first pop-
ulation as consisting of firms (teachers) and the second of work-
ers (classrooms). The match output associated with the pairing
of firm i and worker h is now restricted to equal

g(Wi,X
h,Ui,V

h) = β(Wi,X
h) +Ui(X

h) +Vh(Wi), (11)

where β(w, x) is an unrestricted function, Ui(x) =∑K
k=1 1(x = xk )Uki and Vh(w) = ∑J

j=1 1(w = w j )Vh
j with

Vh = (Vh
1 , . . . ,V

h
J )

′ and Ui = (Ui1, . . . ,UiK )′. We normalize
Ui(x) to be conditionally mean zero (i.e.,E[Ui(x)|Wi] = 0 for all
x ∈ X) and impose the analogous restriction on Vh(w). These
normalizations imply that the average match function (AMF)
equals β(w, x). Note that average output across observed
W = w to X = x matches may not equal the AMF. Matching
bias is possible.
Equation (11) is restrictive, ruling out interactive effects in

the unobservable productivity vectorsUi = (U1i, . . . ,UKi)′ and
Vh = (Vh

1 , . . . ,V
h
J )

′. This type of separability restriction plays
an essential role in the empirical structural matching literature
(see Assumption 2 of Galichon and Salanié 2015). To better
understand the content of (11), consider two firms, i and i′, of
the same type, sayw, and twoworkers, h and h′, also of the same
type, say x. Under (11) the aggregate output associated with the
i-to-h and i′-to-h′ matching equals

2β (w, x) +Ui (x) +Vh (w) +Ui′ (x) +Vh′
(w) ,

which exactly coincides with that of the alternative i-to-h′

and i′-to-h matching. Any rearrangement of matches within a
W = w and X = x cell leaves aggregate output unchanged
(although individual match output may, of course, change).
We now turn to firm and worker preferences. The surplus firm

i gets from matching with worker h equals

�i(X
h) = β(Wi,X

h) − τ (Wi,X
h) +Ui(X

h) + ε̃i(X
h),

where τ (w j, xk ) equals the equilibrium transfer a typeWi = w j

firm “pays” a type Xh = xk worker (transfers may be negative),
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and ε̃i(x) = ∑K
k=1 1(x = xk )ε̃ki is an additional source of unob-

served firm-specific heterogeneity. We introduce this term to
allow for a divergence between the net match output of interest
to the econometrician, and the net match surplus agents actu-
ally care about.When these two objects coincide ε̃i(x) will equal
zero for all x ∈ X. (The development in this section employs a
variant of the notation used in Graham (2013), we gloss over
several interesting subtleties of the CS framework, referring the
reader to, for example, Galichon and Salanié (2015) for a rigor-
ous and comprehensive exposition.)
The surplus worker h gets from matching with firm i equals


h(Wi) = τ (Wi,X
h) +Vh(Wi) + υ̃h(Wi),

with υ̃h(w) = ∑J
j=1 1(w = w j )υ̃hj introduced for the same rea-

son as ε̃i(x).
We impose the following informational structure: prior

to matching firms and workers observe their own and can-
didate partners’ types, know the form of β(w, x), and also
observe transfers. While agents also observe the vectors
ε̃i = (ε̃1i, . . . , ε̃Ki)′ and υ̃h = (υ̃h1 , . . . , υ̃

h
J )

′, they do not observe
Ui = (U1i, . . . ,UKi)′ and Vh = (Vh

1 , . . . ,V
h
J )

′. This means that
the ex post utility (and output) associated with any given match
is imperfectly known to agents ex ante. While Ui and Vh are
unobserved, agents have at their disposal the signals Ri and Sh.
We assume that these signals satisfy:

Assumption 5 (Signals). (i) Prior to matching firms and work-
ers observe (Wi,Xh,Ri, Sh, ε̃i, υ̃h), (ii)

Vh ⊥ (Wi,Ri, ε̃i)|Xh, Sh, υ̃h (12)

Ui ⊥ (
Xh, Sh, υ̃h

)∣∣Wi,Ri, ε̃i, (13)

and (iii)

Ui ⊥ ε̃i|Wi,Ri (14)

Vh ⊥ υ̃h
∣∣Xh, Sh. (15)

Part (i) of Assumption 5 defines what is observed by agents
i and h when they match (but prior to realizing match out-
put). Parts (ii) and (iii) restrict the relationship between what is
known and unknown by agents at the time ofmatching. Consider
conditions (12) and (14), which restrict the predictability of
worker and firm productivity, respectively, Vh = (Vh

1 , . . . ,V
h
J )

and Ui = (Ui1, . . . ,UiK )′. We omit a discussion of conditions
(13) and (15), as they are analogous to (12) and (14).
Condition (12) implies that firm i’s own attributes—Wi, Ri,

ε̃i—have no predictive power for worker h′s unobserved produc-
tivity, Vh, conditional on her attributes—Xh, Sh, υ̃h. In words,
conditional on what the two agents know about the worker, what
is additionally known about the firm cannot be used to predict
worker productivity. This appears to be a natural assumption
in our context. Note that (12) alone does not impose restric-
tions on the joint distribution of (W,X,R, S, ε̃, υ̃ ). This implies,
for example, that agents could assortatively match on ε̃k and υ̃ j
within aW = w j,R = r by X = xk, S = s match cell if they so
wanted. Recall, further, that ε̃k and υ̃ j are unobserved by the
econometrician.
Some further reification/simplification may be helpful. Let

Xh ∈ {0, 1} denote whether a worker is “skilled” andWi ∈ {0, 1}
whether a firm is “high tech.” We can think of ε̃i as a vector of

firm-specific cost (or taste) shocks. If ε̃i(0) is low, then it is espe-
cially costly for firm i to hire a low skilled, Xh = 0, worker. The
firm knows this, and also ε̃i(1), prior to choosing the type of
worker they hire. In contrast, think ofUi as a vector of idiosyn-
cratic firm-specific productivity shocks. If Ui(1) is high, then
firm iwill producemore output when they hire a skilled,Xh = 1,
worker. However, the productivity shocks Ui(0) and Ui(1) are
only imperfectly observed, and hence acted upon, by the firm
at the time of hiring. The firm uses the productivity signal Ri to
forecastUi = (Ui(0),Ui(1))′. A second key difference between
ε̃i and Ui is that while the realization of the latter is directly
reflected in observed match output, the influence of the former
on output is only indirect—via the choice of the type of worker
hired.
In this example, condition (14) implies that firm-specific cost

and productivity shocks are independent conditional on own
type and the vector of productivity signals, Ri. Among, say, high
tech, Wi = 1, firms with identical signals, Ri, variation in the
firm-specific costs (or tastes) of hiring the two types of works is
independent of the corresponding firm-specific benefits.
Condition (14) is restrictive. It implies thatW and R contain

all variables that simultaneously predict U and ε̃ or, equiva-
lently, all variables that predict match surplus, and hence choice,
and also affect match output. This condition is analogous to the
“selection on observables” assumption familiar from the pro-
gram evaluation literature. In that context, treatment exogeneity
requires that the set of pretreatment conditioning variables used
by the econometrician include all joint predictors of the treat-
ment and outcome. The appropriateness of condition (14) is
context specific. It will be violated, for example, if there exists a
component of ε̃, which is part of the firm’s information set that
covaries with productivity, U , conditional of those parts of the
information sets that are observed by the econometrician (i.e.,
W and R). If R plausibly approximates those components of a
firm’s prematch information set that are also likely to predict
productivity,U , then invoking Assumption 5 is reasonable.
Under Assumption 5 we prove the following Lemma.

Lemma 2 (Factorization with Signals). Under Assumption 5

fU,V |W,X,R,S,ε̃,υ̃ (u, v| w, x, r, s, ε̃, υ̃ )
= fU |W,R (u| w, r) f V |W,R (v| x, s) . (16)

Proof. See the Appendix. The argument is similar to that used
to show Lemma 1. �

Agents directly act on their knowledge of
(Wi,Xh,Ri, Sh, ε̃i, υ̃h) when matching, inducing a specific
equilibrium match density fW,X,R,S,ε̃,υ̃ (w, x, r, s, ε̃, υ̃ ) in the
process. Observe that Assumption 5 alone does not restrict
this match density (beyond the requirements of feasibility).
As noted above, sorting on ε̃ and υ̃, for example, is allowed.
However Lemma 2 shows that an implication of Assumption
5 is that any such sorting does not induce sorting on U and V
conditional onW,X,R, S, ε̃, and υ̃.
Using Lemma 2, we compute firm i’s expected utility from

matching with worker h as

E
[
�i

(
Xh

)∣∣Wi,X
h,Ri, S

h, ε̃i, υ̃
h
]

= β
(
Wi,X

h
) − τ

(
Wi,X

h
) + ε̄i

(
Xh

)
, (17)
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where ε̄i(Xh) is the firm’s forecast ofUi(Xh) + ε̃i(Xh)

ε̄i
(
Xh

) =
K∑
k=1

1
(
Xh = xk

)
E [Uki|Wi,Ri] + ε̃i(X

h). (18)

Note that the utility firm i expects to receive whenmatchingwith
worker h depends on worker h’s type alone. Although the firm
also observes the worker attributes Sh and υ̃h, its expected utility
is invariant to them. This result is an implication of the separable
form of the CS utility function, something we inherit from the
structural matching literature, as well as our assumption about
agent information sets.
Similarly, we compute worker h’s expected utility from

matching with firm i as

E[
h(Wi)|Wi,X
h,Ri, S

h, ε̃i, υ̃
h] = τ (Wi,X

h) + ῡh(Wi), (19)

with the corresponding forecast ofVh (Wi) + υ̃h (Wi) for worker
h equal to

ῡh (Wi) =
J∑
j=1

1
(
Wi = w j

)
E

[
Vh
j

∣∣Xh, Sh
] + υ̃h (Wi) . (20)

Worker h’s expected utility from matching with firm i depends
on firm i’s type alone. Although the worker also observes the
firm attributes Ri and ε̃i, her expected utility is invariant to them.
Under (17) and (19) firm and worker partner choice, respec-

tively, satisfies

πDjk = Pr

(
k = arg max

x∈{x1,...,xK}
[
β

(
w j, x

) − τ
(
w j, x

) + ε̄ (x)
])
(21)

and

πSjk,= Pr

(
j = arg max

w∈{w1,...,wJ}
[τ (w, xk ) + ῡ (w)]

)
, (22)

which coincide with the choice rules of the generalized CS
model. The transfers, τ (w, x), adjust so as to ensure that πDjk =
πSjk for all j, k in equilibrium. This ensures that the “demand”
for type Xh = x workers by type Wi = w firms coincides with
the “supply” of type Xh = xworkers to typeWi = w firms (e.g.,
Graham 2013). Galichon and Salanié (2015, Theorems 1 and
2) showed that equilibrium exists and is unique as long as ε̄i(x)
for all x ∈ X and ῡh(w) for all w ∈ W have sufficiently large
support (which we assume here).
The CS equilibrium induces a particular type of sorting. Con-

sider the subpopulation of type Wi = w firms. Among these
firms the subset that matches with type Xh = x workers will
differ from the subset that matches with type Xh = x′ work-
ers. Specifically, from the choice rule (21), the distribution of
ε̄(x) and ε̄(x′) will differ between the two groups. Because Ri
covaries with ε̄i—see (18) above—the distribution of Ri may
differ across the two groups as well. Finally, because Ri covaries
withUi, the distribution ofUi may differ across the two groups.
Consequently average output acrossW = w to X = x matches
will not generally coincide with the AMF. This is because the
distribution of firm productivity in this cell may differ from that
across the entire subpopulation ofW = w firms in a CS equilib-
rium. A similar reasoning can be used to describe how, among
workers of the same type, the distribution of worker ability will
vary with the chosen type of the matched firm.

Under Assumption 5, the availability of R and S is suffi-
cient to “undo” any biases caused by CS matching. Together
(11) and Lemma 2 imply (multiplying both sides of (16) by
fε̃,υ̃|W,X,R,S(ε̃, υ̃|w, x, r, s) and integrating over ε̃ and υ̃ gives

fU,V |W,X,R,S (u, v| w, x, r, s) = fU |W,R (u| w, r) f V |W,R (v| x, s))
that the proxy variable regression function (8) equals

q(w j, xk, r, s) = β(w j, xk ) + E [Uk|W = w,R = r]

+E[Vj|X = x, S = s] (23)

for all combinations of j = 1, . . . , J and k = 1, . . . ,K. Plug-
ging (23) into the right-hand side of (9) or (10) and evaluating
then gives∫

s

∫
r
q(w j, xk, r, s) f (r|w j ) f (s|xk)drds = β(w j, xk ).

Lemma 2 and (23) thus give.

Proposition 2 (CS Equilibrium and Exogeneity). When
match surplus and output takes the form described above,
and agents’ prematch information sets satisfy Assumption 5,
agents will (i) match according to (21) and (22), (ii) transfers
adjust to clear the market, and (iii) the equilibrium matching
will satisfy the conditionally exogenous matching condition
(Assumption 2).

For an empirical researcher contemplating invoking Assump-
tion 2 in a setting where agents choose match partners in a
decentralized way (with transferable utility), assessing the plau-
sibility of Assumption 5 is key. This condition is analogous to
conditions for input exogeneity in single-agent models (e.g.,
Chamberlain 1984; Olley and Pakes 1996). (In Chamberlain’s
(1984) example, the farmer knows land quality (unobserved
by the econometrician) when choosing her input level, but is
unable to forecast weather. Weather influences farm output, but
only after input choices are made.) Consider the teacher-to-
classroom matching problem introduced in the introduction. In
that example Ri should include attributes that correlate with
teacher productivity, Ui. Likewise Sh should include student
characteristics that are associated with high levels of achieve-
ment, Vh. It may be that there are additional (unobserved)
teacher and student attributes that influence the matching pro-
cess, for example, some teachers may especially prefer to work
close to where they live. In that case, condition (14) would
require that conditional on Ri, a teacher’s commuting tastes do
not help to predict her unobserved productivity.
To be clear our conclusion is not that Assumption 2 is suitable

for routine use in all observational settings, rather it is that it (i)
can be appropriate in certain well-defined settings and (ii) it is
possible to reason about such settings in a ways familiar from
the single agent observational context (e.g., Heckman, Smith,
and Clements 1997; Imbens 2004). As in the single agent con-
text, articulating the relationship between the agents’ and the
econometrician’s information sets is central.
Research designs based on conditional exogeneity assump-

tions (i.e., “selection on observables,” “unconfoundedness,”
etc.) have proved to be a very durable, albeit controversial, part
of the researcher’s toolkit (e.g., Chamberlain 1984; Olley and
Pakes 1996; Griliches and Mairesse 1998). Our view, shaped by
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the observation that Assumption 2 is compatible with the lead-
ing empirical model of one-to-one matching under certain infor-
mational assumptions, is that covariate adjustment can play a
similar role in multi-agent production problems.

5. SEMIPARAMETRIC EFFICIENCY BOUND

Our final result, Theorem 1, characterizes the semiparamet-
ric efficiency bound for β(w, x) under (1) and Assumptions
1, 2, and 3. As in Graham (2011b), a multinomial approx-
imation (not reported) was used to conjecture the form of
the bound, with the formal result following from a pathwise
derivative calculation, as in Newey (1990). We have also ver-
ified our derivation of the efficient influence function using
the method of Newey (1994b) and the moment condition
E[ 1

ρwλx

f (R) f (S)
f (R,S)

pw (R)px(S)
pwx(R,S)

TwxY − β(w, x)] = 0.
Let Dw(W ) = Dw = 1 if W = w and zero otherwise. Let

Ex(X ) = Ex = 1 if X = x and zero otherwise. Let Twx(W,X ) =
Twx = 1 if W = w and X = x and zero otherwise. Let βwx =
β(w, x) and define the candidate efficient influence function

φ0 (Z, βwx, h (Z)) = ψ0 (Z, βwx, h (Z)) + ψR (Z, βwx, h (Z))

+ψS (Z, βwx, h (Z)) , (24)

where

h (Z) = ( f (R, S) , f (R|W ) , f (S|X ) , ρω, λx,
pwx (R, S) , q (w, x,R, S) , eS (w, x,R) , eR (w, x, S))

′

and

ψ0 (Z, βwx, h (Z)) = f (R|W ) f (S|X )
f (R, S)

Twx

pwx (R, S)

× (Y − q (w, x,R, S))

ψR (Z, βwx, h (Z)) = Dw

ρw

(eS (w, x,R) − βwx)

ψS (Z, βwx, h (Z)) = Ex
λx

(eR (w, x, S) − βwx)

with

eS (w, x, r) =
∫
q (w, x, r, s) f ( s| x) ds

eR (w, x, s) =
∫
q (w, x, r, s) f ( r| w) dr.

Define the candidate variance bound

I0 (βwx)
−1 = E

[{
f (R|W = w) f (S|X = x)

f (R, S)

}2
σ 2

wx (R, S)

pwx (R, S)

]

+ 1

ρw

E
[
(eS (w, x,R) − βwx)

2
∣∣W = w

]

+ 1

λx
E

[
(eR (w, x, S) − βwx)

2
∣∣X = x

]
+ 2

πwx

ρwλx
E[(eS(w, x,R)−βwx)(eR(w, x, S)−βwx)|

W = w,X = x] (25)

with

σ 2
wx (r, s) = V (Y |W = w,X = x,R = r, S = s) .

Theorem 1. The semiparametric efficiency bound for βwx

in the problem defined by (1) and Assumptions 1, 2, and
3 is equal to I0(βwx) with an efficient influence function of
φ0(Z, βwx, h(Z)).

Proof. See the Appendix. �

Both the efficient influence function and the variance bound
have straightforward interpretations. Consider first the influence
function. Its first term, ψ0(Z, βwx, h(Z)), reflects the asymp-
totic penalty associated with not knowing conditional distri-
bution of Y given (W,X,R, S). The second and third terms,
ψR(Z, βwx, h(Z)) andψS(Z, βwx, h(Z)), reflect the contributions
of uncertainty about, respectively, the conditional distributions
of R givenW and S given X . The interpretation of I0(βwx)−1 is
analogous, with its last term arising from covariance between
ψR(Z, βwx, h(Z)) and ψS(Z, βwx, h(Z)).
One implication of Theorem 1 likely to be of direct interest

to empirical researchers is its implications for the relationship
between the quality of overlap and feasible precision. Under
conditional homoscedasticity, the firm term in I0(βwx)−1 is pro-
portional to

E

[{
f (R|W = w) f (S|X = x)

f (R, S)

}2 1

pwx (R, S)

]
,

which will be large when the conditional probability of a
Wi = w toXh = xmatch is very low for enough combinations of
Ri = r and Sh = s appearing in S

feasible
RS (w, x). Developing sim-

ple diagnostics for assessing our support condition (Assumption
4), similar to those available in the program evaluation setting,
would be useful.
Although we do not formally present an AMF estimator that

attains the bound of Theorem 1, in the next section we discuss
some procedures which are likely to do so under appropriate
regularity conditions. An analog estimate of the efficient influ-
ence function given in Equation (24) could be used to construct
a consistent variance estimate for these AMF estimators.

6. FURTHER RESEARCH DIRECTIONS

In this article, we have characterized a method of covariate
adjustment appropriate for two-agent models. (The extension
to settings with more than two agents appears to be straight-
forward. Graham, Imbens, and Ridder (2010) provided one
motivating example for such an extension.) When matching
is conditionally exogenous our approach to covariate adjust-
ment recovers a well-defined causal object: the average match
function (AMF). Although, as in other areas of applied social
science research, the econometrician may be interested in “con-
trolling for” observed covariate differences even if Assumption
2 does not hold (exactly) (see Keiding and Clayton 2014).
Our efficiency bound calculation characterizes the maximum
asymptotic precision possible when undertaking such covariate
adjustment. The bound is valid for the estimand defined by the
right-hand side of (10) irrespective of whether it also coincides
with the AMF.
Recovering structural objects via covariate adjustment can be

controversial in some settings (see Freedman 1997). Proposition
2 relates our conditionally exogenous matching assumption to
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the structural TU matching model of Choo and Siow (2006a,b).
This model has been an object of intense study, development,
and application in recent years (see Chiappori and Salanié 2016
for a survey). Proposition 2 shows that a status quo matching
can both satisfy our key identifying assumption (Assumption 2)
and be consistent with a TU matching equilibrium. This result
requires maintaining certain assumptions about agents’ infor-
mation sets (Assumption 5) and provides guidance regarding
which types of measures should be included in the teacher and
classroom proxy variables, respectively, R and S.
We have not presented an estimator for the AMF, instead

we leave this exercise to future research. However, the struc-
ture of the efficient influence function in Theorem 1 suggest
several possibilities. Perhaps the most obvious is the following
“double average” estimator

β̂DA (w, x)

= N−2 ∑N
i=1

∑N
j=1 1 (Wi = w) 1

(
Xj = x

)
q̂

(
w, x,Ri, S j

)
N−2

∑N
i=1

∑N
j=1 1 (Wi = w) 1

(
Xj = x

) ,

(26)

where q̂(w, x,Ri, S j ) is a preliminary nonparametric estimate.
This estimator is similar to the partial mean estimator intro-
duced by Newey (1994a), but instead requires “integration”
with respect to a product of two marginal distributions (as
opposed to integrating with respect to a single joint distribu-
tion). This feature is reflected in the V-Statistic structure of
(26). Statistically, (26) corresponds to the random matching
estimator introduced in Graham, Imbens, and Ridder (2014)
for the special case where Wi = w for all i and Xj = x for all
j (i.e., when there is only one type of teacher and only one
type of classroom). (Graham, Imbens, and Ridder (2014) esti-
mated q̂(w, x, r, s) by a particular kernel regression estimator
designed to deal with boundary bias.) In that case the efficient
influence function given in Theorem 1 also corresponds to the
influence function derived (by brute force) in Graham, Imbens,
and Ridder (2014). This suggests that an efficient estimator
for the AMF could be constructed by adapting the regularity
conditions and specific estimation procedures presented there
(likewise it implies semiparametric efficiency of the random
matching estimator). Empirical researchers might consider
using a flexible parametric estimate of q̂(w, x, r, s) in practice.

The form of the efficient influence function also suggests an
inverse probability weighting type (IPW) estimator. In particu-
lar, under (1) and Assumptions 1, 2, and 4, we have

β (w, x) = E

[
1

ρwλx

f (R) f (S)

f (R, S)

pw (R) px (S)

pwx (R, S)
TwxY

]
.

This suggests an estimator, akin the one studied by Hirano,
Imbens, and Ridder (2003) for the single agent case, of

β̂IPW (w, x) = 1

N

1

ρ̂wλ̂x

N∑
i=1

f̂ (Ri) f̂ (Si)

f̂ (Ri, Si)

p̂w (Ri) p̂x (Si)

p̂wx (Ri, Si)
Twx,iYi.

(27)
It would also be of interest to construct locally efficient, doubly
robust, estimators, as has been done in the program evaluation
context (see Graham, Pinto, and Egel 2012, Graham, Pinto, and
Egel 2016, and the references cited therein).

The AMF provides information on how match output varies
across different types of agent pairings. We close our article by
briefly outlining how to integrate the AMF into an explicit social
planning problem. We assume the social planner knows β(w, x)
for all (w, x) ∈ W × X (perhaps up to sampling uncertainty).
She also knows the marginal distributions of teacher and class-
room types, respectively, ρ = (ρ1, . . . , ρJ )′ for ρ j = Pr(Wi =
w j ) and λ = (λ1, . . . , λK )′ for λk = Pr(Xh = xk ) (again perhaps
up to sampling uncertainty). She does not observe (R′

i,U
′
i )

′ or
(Sh,Vh)′ or is unable/unwilling to act on this knowledge if she
does. Put differently, the planner is constrained to consider only
doubly randomized reallocations (Graham 2008, 2011a).
Recall that π jk = Pr(W = w j,X = xk ) for j = 1, . . . J and

k = 1, . . . ,K. The planner’s problem is to choose a π =
(π11, . . . , π1K, . . . , πJ1, . . . , πJK )′ that maximizes expected
output

θ (π ) =
J∑
j=1

K∑
k=1

β
(
w j, xk

)
π jk (28)

subject to the J + K feasibility constraints:

K∑
k=1

π jk = ρ j, j = 1, . . . , J (29)

J∑
j=1

π jk = λk, k = 1, . . . ,K.

See Graham, Imbens, and Ridder (2007).
Since

∑J
j=1

∑K
k=1 π jk = 1, one constraint is redundant.

Table 1 depicts the structure of a feasible assignment. By substi-
tuting out the feasibility constraints, an assignment can be rep-
resented in terms of (J − 1)(K − 1) probabilities.

Graham (2011a) showed that the difference between two dou-
bly randomized allocations, π ′ and π is given by

θ
(
π ′) − θ (π ) =

J−1∑
j=1

K−1∑
k=1

(
π ′
jk − π jk

)
(
β (wJ, xK )−β (wJ, xk )−

[
β

(
w j, xK

) −β (
w j, xk

)])
. (30)

Equation (30) indicates that the average outcome properties of
an allocation depend critically on the complementarity proper-
ties of the average match function (AMF). Of particular interest
is the difference between a candidate assignmentπ and the com-
pletely random matching π rdm

jk = ρ jλk for all j = 1, . . . , J and
k = 1, . . . ,K:

θ
(
π ′) − θ

(
π rdm

) =
J−1∑
j=1

K−1∑
k=1

(
π ′
jk − ρ jλk

)
(
β (wJ, xK )−β (wJ, xk )−

[
β

(
w j, xK

)−β (
w j, xk

)])
. (31)

Equation (31) suggests that outcome-maximizing assign-
ments will tend to be assortative (π ′

jk > ρ jλk) in regions
of complementarity (β(wJ, xK ) − β(wJ, xk ) − [β(w j, xK ) −
β(w j, xk )] > 0) and anti-assortative (π ′

jk < ρ jλk) in regions
of substitutability (β(wJ, xK ) − β(wJ, xk ) − [β(w j, xK ) −
β(w j, xk )] < 0).
The semiparametric efficiency bound for θ (π ), for a given

fixed assignment, π , should follow relatively easily from
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Table 1. The structure of feasible assignments

Teachers/Classrooms x1 · · · xK−1 xK fW (w)

w1 π11 · · · π1K−1 ρ1 − ∑K−1
k=1 π1k ρ1

...
...

. . .
...

...
...

wJ−1 πJ−11 · · · πJ−1K−1 ρJ−1 − ∑K−1
k=1 πJ−1k ρJ−1

wJ λ1 − ∑J−1
j=1 π j1 · · · λK−1 − ∑J−1

j=1 π jK−1 1 − ∑J−1
j=1 ρ j −

∑K−1
k=1 λk + ∑J−1

j=1

∑K−1
k=1 π jk ρJ

fX (x) λ1 λK−1 λK

NOTES: The j = 1, . . . , J types of teachers are enumerated in the first column, with the marginal frequency of each type given in the last column. The k = 1, . . . ,K types of classrooms
are enumerated in the first row, with themarginal frequency of each type given in the last row. The joint distribution of teachers and classrooms is characterized by the interior probabilities.
The feasibility constraints are used to reduce the parameterization of an assignment to (J − 1)(K − 1) probabilities.

Theorem 1. Likewise an efficient estimate, θ̂ (π ), should be
straightforward to construct, given the availability on an effi-
cient estimate of the AMF at all points in (w, x) ∈ W × X.

There remain interesting decision theoretical questions regard-
ing how to implement an optimal assignment on the basis of
sample information alone.

APPENDIX: PROOFS

Proof of Lemma 2. To economize on the notation we drop subscripts
from densities in what follows. Recall the notation ε̃i = (ε̃1i, . . . , ε̃Ki)′

and υ̃h = (υ̃h1 , . . . , υ̃
h
J )

′. We begin by factoring the joint density of all
firm and worker attributes as

f (u, v,w, x, r, s, ε̃, υ̃ ) = f ( v, x, s, υ̃| u,w, r, ε̃) f (u, ε̃| w, r) f (w, r)
= f ( v, x, s, υ̃| u,w, r, ε̃) f ( ε̃| w, r)

× f (u| w, r) f (w, r) , (A.1)

where the second equality follows from (14) in the main text. An anal-
ogous calculation gives the parallel factorization

f (u, v,w, x, r, s, ε̃, υ̃ )

= f (u,w, r, ε̃| v, x, s, υ̃ ) f ( υ̃| x, s) f ( v| x, s) f (x, s) . (A.2)

Dividing (A.1) by f (w, x, r, s, ε̃, υ̃ ) yields

f (u, v| w, x, r, s, ε̃, υ̃ )

= f ( v, x, s, υ̃| u,w, r, ε̃) f ( ε̃| w, r) f (u| w, r) f (w, r)
f ( x, s, υ̃| w, r, ε̃) f (w, r, ε̃)

= f ( v, x, s, υ̃| u,w, r, ε̃) f (u| w, r)
f ( x, s, υ̃| u,w, r, ε̃)

= f ( v| w, x, r, s, u, ε̃, υ̃ ) f (u| w, r) , (A.3)

where the second equality follows from (13) of the main text.
Dividing (A.2) by f (w, x, r, s, ε̃, υ̃ ) and invoking (12) yields the par-

allel result

f (u, v| w, x, r, s, ε̃, υ̃ ) = f (u| w, x, r, s, v, ε̃, υ̃ ) f ( v| x, s) . (A.4)

Integrating (A.4) with respect to u gives

f ( v| w, x, r, s, u, ε̃, υ̃ ) = f ( v| x, s) . (A.5)

Substituting (A.5) into (A.3) yields the density factorization

f (u, v| w, x, r, s, ε̃, υ̃ ) = f (u| w, r) f ( v| x, s)

as claimed.

Proof of Theorem 1. In calculating the semiparametric efficiency bound
for the model defined by (1) and Assumptions 1–4 we follow the gen-
eral approach of Bickel et al. (1993) and, especially, Newey (1990,
sec. 3). First, we characterize the nuisance tangent space. Second, we
demonstrate pathwise differentiability of the average match function
β jk = β(w j, xk ). The efficient influence function is the projection of
the pathwise derivative onto the nuisance tangent space. In the present
case, the pathwise derivative is an element of the tangent space and
therefore coincides with the required projection (i.e., β jk is a parame-
ter of an unrestricted distribution and hence the pathwise derivative is
unique; see Newey 1994b). Themain result then follows fromTheorem
3.1 of Newey (1990, p. 106).

Step 1: Characterization of tangent space
The joint density function of Z = (W,X,Y,R′, S′)′ , recalling that

pjk (r, s) = Pr
(
W = w j,X = xk

∣∣R = r, S = s
)
,

ρ j = Pr(W = w j ) and λk = Pr(X = xk ), is conveniently factorized as
follows:

f (y,w, x, r, s) =
J∏
j=1

K∏
k=1

f
(
y| w j, xk, r, s

)d jek

× f ( r, s| w j, xk )
d jek Pr

(
W = w j,X = xk

)d jek
=

J∏
j=1

K∏
k=1

f
(
y| w j, xk, r, s

)d jek

×
[

f
(
w j, xk, r, s

)
f
(
w j, r

)
f (xk, s)

f
(
r| w j

)
f ( s| xk ) ρ jλk

]d jek

=
J∏
j=1

K∏
k=1

f
(
y| w j, xk, r, s

)d jek

×
[

p jk (r, s)

p j (r) pk (s)

f (r, s)

f (r) f (s)
f
(
r| w j

)
f ( s| xk ) ρ jλk

]d jek
,

where we suppress the functional dependence of dj on w and ek on
x. (That is, Dj = Dj(W ) = 1 ifW = w j and zero otherwise and Ek =
Ek(X ) = 1 if X = xk and zero otherwise.) Recall also that pj(r) =
Pr(W = w j|R = r) and pk(s) = Pr(X = xk|S = s).

Consider a regular parametric submodel with f (y,w, x, r, s; η) =
f (y,w, x, r, s) at η = η0. The submodel joint density is given by

f (y,w, x, r, s; η) =
J∏
j=1

K∏
k=1

f
(
y| w j, xk, r, s; η

)d jek

×
[

pjk (r, s; η)
pj (r; η) pk (s; η)

f (r, s; η)
f (r; η) f (s; η)

× f
(
r|w j; η

)
f ( s| xk; η) ρ j (η) λk (η)

]d jek
.
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The submodel log-likelihood is

ln f (y,w, x, r, s; η)

=
J∑
j=1

K∑
k=1

djek ln f
(
y| w j, xk, r, s; η

)

+
J∑
j=1

K∑
k=1

djek ln

{
pjk (r, s; η)

pj (r; η) pk (s; η)
f (r, s; η)

f (r; η) f (s; η)
}

+
J∑
j=1

K∑
k=1

djek ln f
(
r| w j; η

) +
J∑
j=1

K∑
k=1

djek ln f ( s| xk; η)

+
J∑
j=1

K∑
k=1

djek ln ρ j (η) +
J∑
j=1

K∑
k=1

djek ln λk (η)

=
J∑
j=1

K∑
k=1

djek ln f
(
y| w j, xk, r, s; η

)

+
J∑
j=1

K∑
k=1

djek ln

{
pjk (r, s; η)

pj (r; η) pk (s; η)
f (r, s; η)

f (r; η) f (s; η)
}

+
J∑
j=1

dj ln f
(
r|w j; η

) +
K∑
k=1

ek ln f ( s| xk; η)

+
J∑
j=1

dj ln ρ j (η) +
K∑
k=1

ek ln λk (η) ,

with an associated score vector of

sη (y,w, x, r, s; η) =
J∑
j=1

K∑
k=1

djeksη
(
y| w j, xk, r, s; η

)

+
J∑
j=1

K∑
k=1

djekkη
(
w j, xk, r, s; η

)

+
J∑
j=1

djtη
(
r|w j; η

) +
K∑
k=1

ektη ( s| xk; η)

+
J∑
j=1

djρ j,η (η) +
K∑
k=1

ekλk,η (η) , (A.6)

where

sη
(
y| w j, xk, r, s; η

) = ∇η ln f
(
y| w j, xk, r, s; η

)
kη

(
w j, xk, r, s; η

) = ∇η ln pjk (r, s; η) − ∇η ln pj (r; η)
−∇η ln pk (s; η)
+∇η ln f (r, s; η) − ∇η ln f (r; η)
−∇η ln f (s; η)

tη
(
r|w j; η

) = ∇η ln f
(
r| w j; η

)
tη ( s| xk; η) = ∇η ln f ( s| xk; η)

ρ j,η (η) = ∂ ln ρ j (η)

∂η

λk,η (η) = ∂ ln λk (η)

∂η
.

By the usual conditional mean zero property of the score function,

E[ sη (Y |W,X,R, S)∣∣W,X,R, S] = 0

E[kη (W,X,R, S)] = 0

E[ tη (R|W )
∣∣W ] = 0

E[ tη (S|X )
∣∣X] = 0, (A.7)

where the suppression of η in a function means that it is evaluated at is
population value (e.g., tη(S|X ) = tη(S|X; η0)).

From (A.6) and (A.7), the tangent set is therefore given by

T =
⎧⎨
⎩

J∑
j=1

K∑
k=1

djeks
(
y| w j, xk, r, s

) +
J∑
j=1

K∑
k=1

djekk(w j, xk, r, s)

+
J∑
j=1

djt
(
r|w j

) +
K∑
k=1

ekt ( s| xk ) +
J∑
j=1

dja j +
K∑
k=1

ekbk

⎫⎬
⎭ ,
(A.8)

where aj and bk are finite constants for j = 1, . . . , J and k = 1, . . . ,K
and s(y|w j, xk, r, s), k(w j, xk, r, s), t(r|w j ), and t(s|xk ) satisfy

E [ s (Y |W,X,R, S)|W,X,R, S] = 0

E [k (W,X,R, S)] = 0

E [ t (R|W )|W ] = 0

E [ t (S|X )|X] = 0.

Step 2: Demonstration of pathwise differentiability
Under the parametric submodel β(η) is identified by

β (w, x; η)

=
∫ ∫ [∫

y f ( y| w, x, r, s; η) dy
]
f ( r| w; η) f ( s| x; η) drds.

Differentiating under the integral and evaluating at η = η0 gives

∂β (w, x; η0)
∂η′

=
∫ ∫

E
[
Ysη (Y |W,X,R, S)∣∣w, x, r, s] f ( r| w; η0) f ( s| x; η0) drds

+
∫ ∫

q (w, x, r, s) tη ( r|w)′ f ( r|w; η0) f ( s| x; η0) drds

+
∫ ∫

q (w, x, r, s) tη ( s| x)′ f ( r| w; η0) f ( s| x; η0) drds

=
∫ ∫

E
[
Ysη (Y |W,X,R, S)∣∣w, x, r, s] f ( r| w; η0) f ( s| x; η0) drds

+
∫
eS (w, x, r) tη ( r|w)′ f ( r| w; η0) dr

+
∫
eR (w, x, s) tη ( s| x)′ f ( s| x; η0) ds

=
∫ ∫

E
[
Ysη (Y |W,X,R, S)∣∣w, x, r, s] f ( r| w; η0) f ( s| x; η0) drds

+E
[
eS (w, x,R) tη (R| w)′

∣∣ w]
+E

[
eR (w, x, S) tη (S| x)′

∣∣ x] , (A.9)
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where

eS (w, x, r) =
∫
q (w, x, r, s) f ( s| x; η0) ds

eR (w, x, s) =
∫
q (w, x, r, s) f ( r|w; η0) dr.

To demonstrate pathwise differentiability of β jk = β(w j, xk ), we
require F (Y,w j, xk,R, S) such that

∂β(w j, xk; η0)
∂η′ = E[F (Y,w j, xk,R, S)sη(Y,w j, xk,R, S)

′]. (A.10)

With some work it is possible to show that condition (A.10) holds
for

F
(
Y,w j, xk,R, S

)
= f

(
R| w j

)
f (S| xk )

f (R, S)

DjEk
p jk (R, S)

(
Y − q

(
w j, xk,R, S

))

+ Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
) + Ek

λk

(
eR

(
w j, xk, S

) − β jk
)
. (A.11)

We evaluate the covariance of each of the three terms in (A.11) with
sη(Y,w j, xk,R, S) in turn.

We begin with

E

[
f
(
R| w j

)
f (S| xk )

f (R, S)

DjEk
p jk(R, S)

(
Y − q

(
w j, xk,R, S

))

×DjEksη
(
Y,w j, xk,R, S

) ]

= E

[
f (R|w j ) f (S|xk )

f (R, S)

DjEk
p jk(R, S)

× (
Y − q

(
w j, xk,R, S

))
DjEksη

(
Y | w j, xk,R

)]
+E

[
f
(
R|w j

)
f (S| xk )

f (R, S)

DjEk
p jk (R, S)

× (
Y − q

(
w j, xk,R, S

))
DjEk

∂ log f
(
w j, xk,R, S; η0

)
∂η′

]

= E

[
f
(
R| w j

)
f (S| xk )

f (R, S)

DjEk
p jk (R, S)

Ysη
(
Y | w j, xk,R, S

)]

= E

[
f
(
R| w j

)
f (S| xk )

f (R, S)

DjEk
p jk (R, S)

×E
[
Ysη

(
Y | w j, xk,R, S

)∣∣ w j, xk,R, S
]]

=
∫ ∫ J∑

l=1

K∑
m=1

f
(
r|w j

)
f ( s| xk )

f (r, s)

Dj (wl )Ek (xm)

pjk (r, s)

×E
[
Ysη

(
Y | w j, xk,R, S

)∣∣ w j, xk, r, s
]
plm (r, s)

]
f (r, s) drds

=
∫ ∫

E
[
Ysη

(
Y | w j, xk,R, S

)∣∣ w j, xk, r, s
]

× f
(
r|w j

)
f ( s| xk ) drds,

which coincides with the first component of (A.9). The second equality
above follows by iterated expectations and the conditional mean zero

property of the score function. The third and fourth equalities follow
from applications of iterated expectations.

To evaluate the covariance of the second two terms in (A.11) with
sη(Y,w j, xk,R, S; η0) the following alternative density factorizations
will prove useful:

f (w, x, r, s; η) = f ( r|w; η) f ( x, s| w, r; η) f (w; η)
f (w, x, r, s; η) = f ( s| x; η) f (w, r| x, s; η) f (x; η) .

These give, in an abuse of notation, the score decompositions

sη (Y,W,X,R, S; η) = sη (Y |W,X,R, S; η) + tη (R|W ; η)
+ sη (X, S|W,R; η) + sη (W ; η)

sη (Y,W,X,R, S; η) = sη (Y |W,X,R, S; η) + tη (S|X; η)
+ sη (W,R|X, S; η) + sη (X; η) .

By the conditional mean zero property of the score function

E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
sη (Y |W,X,R, S)

]
= 0.

Using iterated expectations further yields

E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
sη (W )

]

= E

[
sη (W )E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)∣∣∣∣W

]]

= sη
(
w j

)
E

[ (
eS

(
w j, xk,R

) − β jk
)∣∣W = w j

]
= sη

(
w j

) (
β jk − β jk

)
= 0.

Similarly, using iterated expectations and the conditional mean zero
property of the score function, yields

E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
sη (X, S|W,R)

]

= E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
E

[
sη (X, S|W,R)

∣∣W,R]]

= E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
) · 0

]

= 0.

Finally,

E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
tη (R|W )

]

= E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
tη (R|W )′

]

= E

[
E

[
Dj

ρ j

(
eS

(
w j, xk,R

) − β jk
)
tη (R|W )′

∣∣∣∣W
]]

= E
[ (
eS

(
w j, xk,R

) − β jk
)
tη (R|W )′

∣∣W = w j

]
= E

[
eS

(
w j, xk,R

)
tη (R|W )′

∣∣W = w j

]
,
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again using the conditional mean zero property of the score function.
Putting these results together gives

E

[
Dj

ρ j
(eS(w j, xk,R) − β jk )sη(Y,W,X,R, S; η0)

]

= E[eS(w j, xk,R)tη(R|W )′|W = w j].

Analogous calculations yield the expression

E

[
Ek
λk

(eR(w j, xk, S) − β jk )sη(Y,W,X,R, S; η0)
]

= E[eR(w j, xk, S; η0)tη(S|X )′|X = xk].

These expressions coincide with the second and third components of
(A.9). Condition (A.10) then holds for F (Y,w j, xk,R, S) as defined in
(A.11).
Step 3: Calculation of projection
The semiparametric variance bound for β jk is the expected square of

the projection of F (Y,w j, xk,R, S) onto T . Since F (Y,w j, xk,R, S) ∈
T it coincides with the required projection and is therefore the efficient
influence function as claimed. Here,

f
(
R| w j

)
f (S| xk )

f (R, S)

DjEk
p jk (R, S)

(Y − q(w j, xk,R, S))

plays the role of
∑J

j=1

∑K
k=1 djeks(y|w j, xk, r, s) and

Dj

ρ j
(eS(w j, xk,R) − β jk )

and

Ek
λk

(eR(w j, xk, S) − β jk )

the roles of, respectively, djt(r|w j ) and ekt(s|xk ). Zeros play the role of
the remaining terms.
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