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ABSTRACT
We study the effects of counterfactual teacher-to-classroom assignments on average student achievement
in U.S. elementary and middle schools. We use the Measures of Effective Teaching (MET) experiment to semi-
parametrically identify the average reallocation effects (AREs) of such assignments. Our identification strat-
egy exploits the random assignment of teachers to classrooms in MET schools. To account for noncompliance
of some students and teachers to the random assignment, we develop and implement a semiparametric
instrumental variables estimator. We find that changes in within-district teacher assignments could have
appreciable effects on student achievement. Unlike policies that aim at changing the pool of teachers (e.g.,
teacher tenure policies or class-size reduction measures), alternative teacher-to-classroom assignments do
not require that districts hire new teachers or lay off existing ones; they raise student achievement through
a more efficient deployment of existing teachers.
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1. Introduction

Approximately 4 million teachers work in the public elementary
and secondary education system in the United States. These
teachers provide instruction to almost 50 million students,
enrolled in nearly 1000 schools, across more than 13,000
school districts (McFarland et al. 2019; Snyder, de Brey, and
Dillow 2017). Differences in measured student achievement
are substantial across U.S. schools and across classrooms
within these schools. Beginning with Hanushek (1971), a large
economics of education literature attributes cross-classroom
variation in student achievement to corresponding variation
in (largely) latent teacher attributes. These latent attributes are
referred to as teacher quality or value-added.

The implications of value-added measures (VAM) for edu-
cation policy are controversial both within the academy and
outside it (see Morganstein and Wasserstein 2014). The most
contentious applications of VAM involve their use in teacher
tenure and termination decisions (see Chetty, Friedman, and
Rockoff 2012; Darling-Hammond 2015). The premise of such
applications is that changes in the stock of existing teachers—
specifically rooting out teachers with low VAMs and retaining
those with high ones—could lead to large increases in student
achievement and other life outcomes.

This article poses an entirely different question: is it possible
to raise student achievement, without changes to the existing
pool of teachers, by changing who teaches whom? Schools and
school districts are the loci of teacher employment. To keep the
analysis policy-relevant, we therefore focus on the achievement

CONTACT Petra Thiemann petra.thiemann@nek.lu.se Department of Economics, Lund University, P.O. Box 7080, 22007 Lund, Sweden.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

effects of different within-school and within-district teacher-to-
classroom assignment policies.

For teacher assignment policies to matter, teachers must vary
in their effectiveness in teaching different types of students.
For example, some teachers may be especially good at teaching
English language learners, minority students, or accelerated
learners (see Dee 2004; Loeb, Soland, and Fox 2014). Formally
educational production must be nonseparable in some teacher
and student attributes (Graham, Imbens, and Ridder 2007, 2014,
2020).

We present experimental evidence of such nonseparabilities,
using data from the Measures of Effective Teaching (MET)
project. The MET project was conducted in six urban public
school districts in the United States during two school years
(2009/2010 and 2010/2011) in grades 4–10. Its goal was to
evaluate different measures of teacher effectiveness; to this end,
MET researchers randomly assigned teachers to classrooms
within schools. We exploit the experimental design in combi-
nation with rich data on teaching practices collected through-
out the experiment. Specifically, we study complementarities
between (i) an observation-based, pre-experiment measure of
teaching practice—Danielson’s (2011) Framework for Teaching
(FFT) instrument—and (ii) students’ and classroom peers’ base-
line test scores, also measured pre-experiment. As achievement
measures we use students’ test score outcomes in math and
English language arts (ELA).

We focus on the FFT because observational measures of
classroom teaching play an important role in practice. In 98%
of U.S. public schools, school principals collect observational
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measures and use them for a variety of purposes, for instance
to determine teaching assignments, to decide upon teacher pro-
motion and retention, and to provide feedback to teachers (U.S.
Department of Education 2020). Such measures are also increas-
ingly used in research (e.g., Garrett and Steinberg 2015; Araujo
et al. 2016; Burgess, Rawal, and Taylor 2021; notably, Aucejo
et al. 2022, investigate interaction effects between the FFT and
classroom composition in the MET data). Because of their prac-
tical relevance and wide applicability, observational measures
are a natural starting point for the study of alternative teacher-
to-classroom assignments.

To quantify the potential achievement effects of alternative
teacher-to-classroom assignments, we estimate the hypothetical
test score gains associated with a reallocation that maximizes
average achievement. Because our model allows for both
complementarities and nonlinearity in the underlying variables
(FFT and student baseline achievement), determining an
outcome-maximizing assignment is nontrivial. We compute
the optimal assignment using linear programming methods
under the constraint that the existing pool of teachers remains
unchanged (see Bhattacharya 2009).

We find that within-district changes in teacher-to-classroom
assignments could increase average classroom student achieve-
ment by as much as 0.04 standard deviations. This effect cor-
responds to the estimated difference in average achievement
across the teacher-to-classroom assignment which maximizes
aggregate achievement versus the one which minimizes it. Per-
haps more realistically, comparing the status quo assignment in
MET schools—which was generated by random assignment of
teachers to classrooms—with the optimal one generates an esti-
mated increase in average test scores of 0.02 standard deviations.

To benchmark these effect sizes consider a policy which
removes the bottom τ × 100% of teachers from classrooms—
sorted according to their VAM—and replaces them with average
teachers (i.e., teachers with VAMs of zero). Assuming a Gaussian
distribution for teacher value-added, the effect of such an inter-
vention would be to increase the mean of the student test score
distribution by

(1 − τ) σ
φ

( qτ

σ

)
1 − �

( qτ

σ

)
standard deviations. Here σ corresponds to the standard devia-
tion of teacher value-added and qτ to its τ th quantile. Rockoff
(2004, Table 2) and Rothstein (2010, Table 6) estimate a standard
deviation of teacher value-added of between 0.10 and 0.15.
Taking the larger estimate and setting τ = 0.05 (0.10) generates
an expected increase in student test scores of 0.015 (0.026) stan-
dard deviations; this is comparable to our reallocation effects.
Replacing 5% (10%) of teachers would be difficult to do in
practice. It would be even more difficult to correctly identify
the bottom 5% (10%) of teachers (according to VA) and replace
them with average ones. We conclude that the achievement
effects of teacher assignment policies are meaningful.

In contrast to policies which replace or hire additional teach-
ers, the within-school and within-district teacher reassignment
policies we explore in this article do not require that districts lay
off existing teachers or attract new ones. Of course, reassigning
teachers across classrooms, and especially across schools within

a district, may involve other types of costs. For example, many
school districts operate under collective bargaining agreements
which give senior teachers partial control over their school
assignment (e.g., Cohen-Vogel, Feng, and Osborne-Lampkin
2013).

Work by Susanna Loeb and coauthors suggests that U.S.
school districts have de facto teacher-to-classroom assign-
ment policies (Kalogrides, Loeb, and Beteille 2011; Grissom,
Kalogrides, and Loeb 2015). For example, they find that less
experienced, minority, and female teachers are more likely to
be assigned to predominantly minority classrooms. They also
present evidence that principals use teacher assignments as
mechanisms for retaining teachers—as well as for encouraging
less effective teachers to leave—and that more experienced
teachers exert more influence on classroom assignment deci-
sions. The present article helps researchers and policy-makers
understand the achievement effects of such policies and the
potential benefits of alternative ones. The findings presented
below suggest that teacher-to-classroom assignment policies
are consequential and that changes to them could meaningfully
increase average student achievement.

In addition to our substantive results, we present new identi-
fication results for average reallocation effects (AREs). Identifi-
cation and estimation of AREs under (conditional) exogeneity is
considered by Graham, Imbens, and Ridder (2014, 2020). These
results do not apply directly here. Although teachers were ran-
domly assigned to classrooms as part of the MET experiment,
compliance was imperfect. Furthermore some students moved
across classrooms after the random assignment of teachers,
which raises concerns about bias due to endogenous student
sorting. We develop a semiparametric instrumental variables
estimator (e.g., Ai and Chen 2003) which corrects for student
and teacher noncompliance. Our analysis highlights how com-
plex identification can be in the context of multi-population
matching models where agents sort endogenously.

This article leaves several important questions for further
research. First, assignments based upon a different combina-
tion of teacher and classroom attributes could lead to even
greater achievement gains. Second, one may consider objective
functions that do no focus on average test scores but instead
on test score gaps or proficiency levels. Third, outcomes other
than math and ELA achievement (e.g., socio-emotional skills)
may also be of interest. Finally, we abstract from issues that
will likely arise when an allocation policy is adopted in prac-
tice. For instance, implementing an optimal allocation could
generate general equilibrium effects or teacher noncompliance
patterns, which we cannot predict in the present study (see Car-
rell, Sacerdote, and West 2013). We leave explorations along
these lines to future work and consider this article as a first
pass that establishes the feasibility of recovering match effects
from imperfect experimental data and shows that the resulting
reallocation effects that depend upon these match effects can be
substantial.

2. Model and Identification

Our goal is to identify the average achievement effects of alter-
native assignments of teachers to MET classrooms. These are
average reallocation effects (AREs), as introduced by Graham,
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Imbens, and Ridder (2007, 2014). The identification challenge
is to use the observed MET teacher-to-classroom assignments
and outcomes to recover these AREs.

Our analysis is based upon experimentally generated com-
binations of student and teacher attributes, that is, it exploits
the random assignment of teachers to classrooms within schools
in the MET experiment. Like in many other field experiments,
various deviations from MET’s intended protocol complicate
the analysis. In this section we outline a semiparametric model
of educational production and consider its identification based
upon the MET project as implemented, using the MET data as
collected.

It is useful, however, to first explore nonparametric identi-
fication of reallocation effects under an ideal implementation
of the MET project (henceforth MET as designed). Such an
approach clarifies how the extra restrictions introduced below
allow for the identification of reallocation effects despite non-
compliance, attrition, and other deviations from the intended
experimental protocol.

2.1. Nonparametric Identification Under Ideal
Circumstances

The setting features two populations, one of students and
the other of teachers. Each student is distinguished by an
observed attribute Xi, in our case a measure of baseline academic
achievement, and an unobserved attribute, say “student ability,”
Vi (shorthand for latent student attributes associated with
higher test scores). Similarly, each teacher is characterized by
an observed attribute Wi, in our case an observation-based
measure of teaching practice, and an unobserved attribute, say
“teacher quality,” Ui (shorthand for latent teacher attributes
associated with higher test scores).

Let i = 1, . . . , N index students. Let C be the total number of
MET classrooms or equivalently teachers. We define Gi to be a
C×1 vector of classroom assignment indicators. The cth element
of Gi equals one if student i is in classroom c ∈ {1, . . . , C} and
zero otherwise. The indices of student i′s peers or classmates are
therefore given by the index set

p (i) = {
j : Gi = Gj, i �= j

}
.

Next we define the peer average attribute as X̄p(i) = 1|p(i)|
∑

j∈p(i)
Xj (i.e., the average of the characteristic X across student i′s
peers). We define V̄p(i) similarly.

The MET project protocol did not impose any requirements
on how students, in a given school-by-grade cell, were divided
into classrooms. Evidently schools followed their existing pro-
cedures for dividing students within a grade into separate class-
rooms. An implication of this observation is that the MET
experiment implies no restrictions on the joint density

fXi,Vi,X̄p(i),V̄p(i)
(x, v, x̄, v̄), (1)

beyond the requirement that the density be feasible. For exam-
ple, if most schools tracked students by prior test scores, then
we would expect Xi and X̄p(i) to positively covary. If, instead,
students were randomly assigned to classrooms and hence

peers, we would have, ignoring finite population issues, the
factorization

fXi,Vi,X̄p(i),V̄p(i)
(x, v, x̄, v̄) = fXi,Vi(x, v)fX̄p(i),V̄p(i)

(x̄, v̄).

Our analysis allows for arbitrary dependence between own
and peer attributes, both observed and unobserved, and con-
sequently is agnostic regarding the protocol used to group stu-
dents into classrooms.

Two implications of this agnosticism are (i) our analysis is
necessarily silent about the presence and nature of any peer
group effects, and (ii) it is likely that more complicated policies,
involving simultaneously regrouping students into new classes
and reassigning teachers to them, could raise achievement by
more than what is feasible via reassignments of teachers to exist-
ing classrooms alone, which is the class of policies we consider.
Learning about the effects of policies which simultaneously
regroup students and reassign teachers would require double
randomization (see Graham 2008; Graham, Imbens, and Ridder
2010, 2020).

Although nothing about the MET protocol generates restric-
tions on the joint density (1), random assignment of teachers to
classrooms—however, formed—ensures that

fXi,Vi,X̄p(i),V̄p(i),Wi,Ui(x, v, x̄, v̄, w, u)

= fXi,Vi,X̄p(i),V̄p(i)
(x, v, x̄, v̄)fWi,Ui(w, u). (2)

Here Wi and Ui denote the observed and unobserved attributes
of the teacher assigned to the classroom of student i. A perfect
implementation of MET as designed would ensure that student
and teacher attributes vary independently of each other. Our
research design is fundamentally based upon restriction (2).

Let Yi be an end-of-year measure of student achievement,
generated according to

Yi = g
(
Xi, X̄p(i), Wi, Vi, V̄p(i), Ui

)
. (3)

Other than the restriction that observed and unobserved peer
attributes enter as means, Equation (3) imposes no restrictions
on educational production. Under restriction (2) the condi-
tional mean of the outcome given observed own, peer, and
teacher attributes equals

E
[

Yi| Xi = x, X̄p(i) = x̄, Wi = w
]

=
∫∫∫ [

g (x, x̄, w, v, v̄, u) f Vi,V̄p(i)|Xi,Xp(i)
(v, v̄| x, x̄)

×f Ui|Wi (u| w)
]

dvdv̄du

= mamf (x, x̄, w) . (4)

Equation (4) coincides with (a variant of) the Average Match
Function (AMF) estimand discussed by Graham, Imbens, and
Ridder (2014, 2020). The AMF can be used to identify AREs.
Our setting—which involves multiple students being matched to
a single teacher—is somewhat more complicated than the one-
to-one matching settings considered by Graham, Imbens, and
Ridder (2014, 2020). One solution to this “problem” would be to
average Equation (3) across all students in the same classroom
and work directly with those averages. As will become apparent
below, however, working with a student-level model makes it
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Table 1. Feasible teacher reassignments.

Classroom Status quo Counterfactual
type Pr

(
Wi = 1| Xi , X̄p(i)

)
Pr

(
W̃i = 1

∣∣∣ Xi , X̄p(i)

)
Xi X̄p(i) f

(
Xi , X̄p(i)

)
000 1

2
1
3 0 0 1

4
0 0 1

4
0 0 1

4
001 1

2
1
2 0 1

2
1
6

0 1
2

1
6

1 0 1
12

011 1
2

1
2 0 1 1

12
1 1

2
1
6

1 1
2

1
6

111 1
2

2
3 1 1 1

4
1 1 1

4
1 1 1

4

Note: The population fraction of type Xi = 1 students is 1
2 and that of type

Wi = 1 teachers is also 1
2 . Classrooms of three students each are formed, such

that the frequency of each of the four possible classroom configurations is 1
4

in the population of classrooms of size 3. Under the status quo teachers are
assigned to classrooms at random; in the counterfactual teachers are assigned
more assortatively. See the main text for more information.

easier to deal with noncompliance and attrition, which have dis-
tinctly student-level features. It also connects our results more
directly with existing empirical work in the economics of K-to-
12 education, where student-level modeling predominates, and
results in greater statistical power.

The decision to model outcomes at the student level makes
the analysis of teacher reassignments a bit more complicated, at
least superficially. To clarify the issues involved it is helpful to
consider an extended example. Assume there are two types of
students, Xi ∈ {0, 1}, and two types of teachers, Wi ∈ {0, 1}. For
simplicity assume that the population fractions of type Xi = 1
students and type Wi = 1 teachers both equal one-half, that
is, half of the students are of type 1 and half of the students
are taught by a teacher of type 1. Assume, again to keep things
simple, that classrooms consist of three students each.

Table 1 summarizes this basic set-up. Column 1 lists class-
room types. For example, a 000 classroom consists of all type-0
students. There are four possible classroom types, each assumed
to occur with a frequency of one-fourth. The status quo mech-
anism for grouping students into classrooms induces a joint
distribution of own and peer average attributes. This joint distri-
bution is given in the right-most column of Table 1. For instance,
1
4 (3 out of 12) of the students are in a classroom with two
type-0 peers, so that fXi,X̄p(i)

(0, 0) = 1
4 , and 1

6 (2 out of 12) of
the students are in a classroom with one type-0 and one type-1
peer, so that fXi,X̄p(i)

(0, 1
2 ) = 1

6 . The MET experiment implies no
restrictions on the joint density fXi,X̄p(i)

(x, x̄), consequently we
only consider policies which leave it unchanged.

Next assume, as was the case in the MET experiment, that
under the status quo teachers are randomly assigned to class-
rooms. This induces the conditional distribution of Wi given Xi
and X̄p(i) reported in column 2 of Table 1. Of course, from this
conditional distribution, and the marginal for Xi and X̄p(i), we
can recover the joint distribution of own type, peer average type,
and teacher type (i.e., of Xi, X̄p(i) and Wi).

Now consider the AMF: mamf (x, x̄, w). Consider the subpop-
ulation of students with Xi = 1 and X̄p(i) = 1

2 . Inspecting
Table 1, this subpopulation represents 1

6 of all students (right-
most column of Table 1). If we assign to students in this sub-
population a teacher of type Wi = 1, then the expected out-
come coincides with mamf (

1, 1
2 , 1

)
. Under random assignment

of teachers the probability of assigning a type-1 teacher is the
same for all subpopulations of students.

Finally consider a counterfactual assignment of teachers
to classrooms. Since we leave the composition of classrooms
unchanged, fXi,X̄p(i)

(x, x̄) is left unmodified. The counterfactual
assignment therefore corresponds to a conditional distribution
for teacher type, f̃ W̃i

∣∣∣Xi,X̄p(i)
(w| x, x̄) which satisfies the feasibility

condition:

∫∫
f̃ W̃i

∣∣∣Xi,X̄p(i)
(w| x, x̄) fXi,X̄p(i)

(x, x̄) dxdx̄ = f (w) (5)

for all w ∈ W. Here f̃ denotes a counterfactual distribution,
while f denotes a status quo one. We use W̃i to denote an
assignment from the counterfactual distribution. Note that by
feasibility of an assignment W̃i

D= Wi marginally, but will differ
conditional on student attributes. Condition (5), as discussed by
Graham, Imbens, and Ridder (2014), allows for degenerate con-
ditional distributions, as might occur under a perfectly positive
assortative matching.

Average achievement under a counterfactual teacher-to-
classroom assignment equals:

βare
(

f̃
)

=
∫∫ [∫

mamf (x, x̄, w) f̃ W̃i
∣∣∣Xi,X̄p(i)

(w| x, x̄) dw
]

fXi,X̄p(i)
(x, x̄) dxdx̄. (6)

Since all the terms to the right of the equality are identified, so
too is the ARE. Conceptually we first—see the inner integral in
Equation (6)—compute the expected outcome in each type of
classroom (e.g., Xi = x and X̄p(i) = x̄) given its new teacher
assignment (e.g., to type W̃i = w). We then—see the outer two
integrals in Equation (6)—average over the status quo distri-
bution of Xi, X̄p(i), which is left unchanged. This yields average
student achievement under the new assignment of teachers to
classrooms.

In addition to the feasibility condition (5) we need to also
rule out allocations that assign different teachers to students in
the same classrooms. Note that mamf (x, x̄, w) is the average out-
come for the subpopulation of students of type Xi = x with peers
X̄p(i) = x̄. For example, in Table 1 classroom 001 has students
from two subpopulations so defined. Assignment of teachers to
subpopulations of students opens up the possibility that a class-
room is assigned to teachers of different types for its constituent
subgroups of students. If, as indicated in Table 1, the teacher-
type assignment probability is the same for all subpopulations of
students represented in a classroom, then the ARE in Equation
(6) coincides with one based on direct assignment of teachers
to classrooms. This implicit restriction on teacher assignments
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provides a link between models for individual outcomes and
classroom-level reallocations.

2.2. Semiparametric Identification Under MET as
Implemented

In the MET experiment as implemented not all teachers and
students appear in their assigned classrooms. This occurs both
due to attrition (e.g., when a student changes schools prior
to follow-up) and due to actual noncompliance (e.g., when a
teacher teaches in a classroom different from their randomly
assigned one).

This section describes our approach to identifying AREs
in MET as implemented. Relative to the previous section
we impose two types of additional restrictions. First, we
work with a semiparametric, as opposed to a nonparametric,
educational production function. Second, we make behavioural
assumptions regarding the nature of noncompliance. Both sets
of assumptions are (partially) testable.

2.2.1. Educational Production Function
Our first set of restrictions involve the form of the educa-
tional production function. A key restriction we impose is that
unobserved student, peer, and teacher attributes enter separably.
Although this assumption features in the majority of economics
of education empirical work (e.g., Chetty, Friedman, and Rock-
off 2014), it is restrictive. We also discretize the observed student
and teacher attributes. This allows us to work with a parsi-
monously parameterized educational production function that
nevertheless accommodates complex patterns of complemen-
tarity between student and teacher attributes. Discretization
also allows us to apply linear programming methods to study
counterfactual assignments (see Graham, Imbens, and Ridder
2007; Bhattacharya 2009).

Specifically we let Xi be a vector of indicators for each of K
“types” of students. Types correspond to intervals of baseline test
scores. Our preferred specification works with K = 3 types of
students: those with low, medium, and high baseline test scores.
In this case Xi is a 2 × 1 vector of dummies for whether student
i’s baseline test score was in the medium or high range (with
the low range being the omitted group). This definition of Xi
means that X̄p(i) equals the 2 × 1 vector of fractions of peers in
the medium and high baseline categories (with the fraction low
range omitted).

We discretize the distribution of the teacher attribute simi-
larly: Wi is a vector of indicators for L different ranges of FFT
scores. In our preferred specification we also work with L = 3
types of teachers: those with low, medium, and high FFT scores.
Hence, Wi is again a 2 × 1 vector of dummies for whether the
teacher of student i’s FFT score was in the medium or high range
(with the low range again being the omitted group).

We assess the sensitivity of our results to coarser and
finer discretizations of the baseline test score and FFT dis-
tributions. Specifically we look at K = L = 2 and K =
L = 4 discretizations (see Section B.2 in the supplementary
materials).

We posit that end-of-school year achievement for student i is
generated according to

Yi = α + X′
iβ + Vi︸ ︷︷ ︸

Student Ability

+ X̄′
p(i)γ + ρV̄p(i)︸ ︷︷ ︸

Peer Effect

+ W′
iδ + Ui︸ ︷︷ ︸

Teacher Quality

+
(

Xi ⊗ X̄p(i)
)′

ζ︸ ︷︷ ︸
Student-Peer Complementarity

+ (Xi ⊗ Wi)
′ η +

(
Wi ⊗ X̄p(i)

)′
λ︸ ︷︷ ︸

Student-Teacher Complementarity
(7)

Observe that—as noted above—own, Vi, peer, V̄p(i), and
teacher, Ui, unobservables enter Equation (7) additively. The
labeled grouping of terms in Equation (7) highlights the
flexibility of our model relative to those typically employed by
researchers. As in traditional models, observed and unobserved
student and teacher attributes are posited to directly influence
achievement. We add to this standard set-up the possibility of
complementarity between own and peer attributes, and comple-
mentarity between own and teacher attributes. Additionally our
model allows for both observed and unobserved peer attributes
to influence achievement.

Conditional on working with a discrete student and teacher
type space, Equation (7) is unrestrictive in how own and teacher
attributes interact to generate achievement. In contrast, Equa-
tion (7) restricts the effect of peers’ observed composition on the
outcome. Partition ζ = (ζ1, . . . , ζK−1) and similarly partition
λ = (λ1, . . . , λL−1). The (K − 1) × 1 gradient of student i’s
outcome with respect to peer composition is

∂Yi

∂X̄p(i)
= γ +

K−1∑
k=1

Xkiζk +
L−1∑
l=1

Wliλl, (8)

which is constant in X̄p(i), although varying heterogenously with
student and teacher type. Put differently convexity/concavity in
X̄p(i) is ruled out by Equation (7). It should be noted that the
MET data, in which the assignment of peers is not random, are
not suitable for estimating peer effects (nonlinear or otherwise).

For completeness we also include the interaction of teacher
type with peer composition—the

(
Wi ⊗ X̄p(i)

)
regressor in

Equation (7)—although λ is poorly identified in practice. Due
to our limited sample size, we do not include the third order
interactions of own, peer, and teacher types.

Relative to a standard “linear-in-means” type model typically
fitted to datasets like ours (e.g., Hanushek, Kain, and Rivkin
2004):

Yi = α + X′
iβ + X̄′

p(i)γ + W′
iδ + Vi + Ui, (9)

Equation (7) is rather flexible. It allows for rich interactions in
observed own, peer, and teacher attributes and is explicit in
that both observed and unobserved peer attributes may influ-
ence own achievement. The “linear-in-means” model (9) pre-
sumes homogenous effects and does not explicitly incorporate
unobserved peer attributes (for models with unobserved peer
attributes, see Manski 1993; Graham 2008).

As mentioned above, a student’s assigned teacher and peers
may deviate from her realized ones due to attrition and non-
compliance. To coherently discuss our assumptions about these
issues we require some additional notation. Let W∗

i and X̄p∗(i)
denote student i’s assigned teacher and peer attribute (here p∗ (i)
is the index set of i’s assigned classmates). Random assign-
ment of teachers to classrooms ensures that a student’s assigned
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teacher’s attributes are independent of her own unobservables:

E
[

Vi| Xi, X̄p∗(i), W∗
i
] = E

[
Vi| Xi, X̄p∗(i)

] def≡ g1
(
Xi, X̄p∗(i)

)
.

(10)
Here g1(x, x̄) is unrestricted. Under double randomization, with
students additionally grouped into classes at random, we would
have the further restriction

E
[

Vi| Xi, X̄p∗(i)
] = E [ Vi| Xi] .

However, since the MET experiment placed no restrictions on
how students were grouped into classrooms, we cannot rule
out the possibility that a student’s peer characteristics, X̄p∗(i),
predict her own unobserved ability, Vi. Consequently our data
are necessarily silent about the presence and nature of any peer
group effects in learning. This limitation does not limit our
ability to study the effects of teacher reallocations, because we
leave the student composition of classrooms—and hence the
“peer effect”—fixed in our counterfactual experiments.

Finally, even with double randomization, we would still have
E [ Vi| Xi] �= 0. Observed and unobserved attributes may nat-
urally covary in any population (for example, average hours of
sleep, which is latent in our setting, plausibly covaries with base-
line achievement and also influences the outcome). Such covari-
ance is only a problem if, as is true in the traditional program
evaluation setting, the policies of interest induce changes in the
marginal distribution of Xi—and hence the joint distribution of
Xi and Vi. This is not the case here: any reallocations leave the
joint distribution of Xi and Vi unchanged.

The MET protocol also ensures that assigned peer unobserv-
ables, V̄p∗(i), are independent of the observed attributes of one’s
assigned teacher:

E

[
V̄p∗(i)

∣∣∣ Xi, X̄p∗(i), W∗
i
]

= E

[
V̄p∗(i)

∣∣∣ Xi, X̄p∗(i)
] def≡ g2

(
Xi, X̄p∗(i)

)
, (11)

with g2
(
Xi, X̄p∗(i)

)
, like g1

(
Xi, X̄p∗(i)

)
, unrestricted.

Random assignment of teachers to classrooms also ensures
independence of the unobserved attribute of a student’s assigned
teacher and observed student and peer characteristics:

E
[

U∗
i
∣∣ Xi, X̄p∗(i), W∗

i
] = E

[
U∗

i
∣∣ W∗

i
] = 0. (12)

The second equality is a normalization; reallocations leave the
joint distribution of Ui and Wi unchanged, so we are free to
normalize this mean to zero.

Under MET as designed we could identify AREs using Equa-
tions (10)–(12). To see this let, as would be true under per-
fect compliance Wi = W∗

i and X̄p(i) = X̄p∗(i) for all i =
1, . . . , N. Using Equations (10)–(12) in combination with the
education production function outlined in Equation (7) yields,
after some algebraic manipulation, the partially linear regression
model (e.g., Robinson 1988):

Yi = W′
iδ + (Xi ⊗ Wi)

′ η + (
Wi ⊗ X̄p(i)

)′
λ + h

(
Xi, X̄p(i)

) + Ai
(13)

with E
[

Ai| Xi, X̄p(i), Wi
] = 0 for

Ai
def≡ [

Vi − g1
(
Xi, X̄p(i)

)] + ρ
[
V̄p(i) − g2

(
Xi, X̄p(i)

)] + Ui,
(14)

and where the nonparametric regression component equals

h
(
Xi, X̄p(i)

) def≡ α + X′
iβ + g1

(
Xi, X̄p(i)

) + X̄′
p(i)γ

+ ρg2
(
Xi, X̄p(i)

) + (
Xi ⊗ X̄p(i)

)′
ζ . (15)

Note, even under this perfect experiment, we cannot iden-
tify β , γ , and ζ ; these terms are confounded by g1

(
Xi, X̄p(i)

)
and g2

(
Xi, X̄p(i)

)
and hence absorbed into the nonparametric

component of the regression model. This lack of identification
reflects the inherent inability of the MET experiment to tell us
anything about peer group effects. We also cannot disentangle
the teacher-student complementarity, η, from the teacher-peer
complementarity, λ, because classroom composition is nonran-
dom. Nevertheless, knowledge of δ, η, and λ is sufficient to
identify the class of reallocation effects we focus upon, because
the reallocations we consider leave the joint distribution of
student and peer characteristics unchanged.

2.2.2. Patterns of Noncompliance
Unfortunately, we do not observe student outcomes under full
compliance. Noncompliance may induce correlation between Ai
and Xi, X̄p(i) and Wi in regression model (13). Our solution to
this problem is to construct instrumental variables for observed
teacher and peer attributes, Wi and X̄p(i)—which necessarily
reflect any noncompliance and attrition on the part of teachers
and students—from the assigned values, W∗

i and X̄p∗(i).
Rigorously justifying this approach requires imposing

restrictions on how, for example, realized and assigned teacher
quality relate to one another. In other words, we need to exclude
systematic patterns of student or teacher switching behavior
based on the characteristics of the assigned teachers or assigned
peers that could bias our IV estimates.

Assumption 1. (Idiosyncratic Teacher Deviations)

E
[

Ui − U∗
i
∣∣ Xi, X̄p∗(i), W∗

i
] = 0. (16)

Assumption 1 implies that the difference between realized and
assigned (unobserved) teacher quality cannot be predicted by
own and assigned peer and teacher observables. The assumption
can be violated, for instance, if students who are assigned a low-
FFT teacher systematically move into classrooms with a teacher
that has a higher unobserved quality, Ui, than their assigned
teacher. In this case, estimates of teacher FFT using assigned
teacher FFT as instrument could be biased.

While Assumption 1 is not directly testable, we can per-
form the following plausibility test. Let Ri − R∗

i be the differ-
ence between the realized and assigned value of some observed
teacher attribute other than Wi (e.g., years of teaching expe-
rience). Under Equation (16), if we compute the OLS fit of
this difference onto 1, Xi, W∗

i , and X̄p∗(i), a test for the joint
significance of the nonconstant regressors should accept the
null of no effect. Finding that, for example, students assigned to
classrooms with a low-FFT teacher tend to move into classrooms
with more experienced teachers suggests that Assumption 1 may
be implausible.

Assumption 1 and Equation (12) yield the mean indepen-
dence restriction

E
[

Ui| Xi, W∗
i , X̄p∗(i)

] = 0. (17)



1334 B. S. GRAHAM ET AL.

This equation imposes restrictions on the unobserved attribute
of student i’s realized teacher. It is this latent variable which
drives the student outcome actually observed.

Our second assumption involves the relationship between
the unobserved attributes of a student’s assigned peers and those
of her realized peers. These two variables will differ if some
students switch out of their assigned classrooms.

Assumption 2. (Conditionally Idiosyncratic Peer Deviations)

E
[
V̄p(i)−V̄p∗(i)

∣∣ Xi, X̄p∗(i), W∗
i
]=E

[
V̄p(i)−V̄p∗(i)

∣∣ Xi, X̄p∗(i)
]

.
(18)

Assumption 2 implies that the difference between realized
and assigned unobserved peer quality cannot be predicted by
assigned teacher observables. We do allow for these deviations
to covary with a student’s type and the assigned composition
of her peers. Assumption 2 can be violated, for instance, if
assigned peers with high unobserved quality, Vp∗(i), move out
of the classroom if assigned to a low-FFT teacher. In this case
assignment to a low-FFT teacher could affect test scores via
changes in classroom composition, thus, potentially creating a
bias in the IV estimates of teacher FFT.

We can assess the plausibility of Assumption 2 using
observed peer attributes. Finding, for example, that—conditional
on own type, Xi, and assigned peers’ average type, X̄∗

p(i)—
assigned teacher quality, W∗

i , predicts differences between the
realized and assigned values of observed peer attributes (e.g.,
gender, race) provides evidence against Assumption 2.

Assumption 2 and Equation (11) yield a second mean inde-
pendence restriction of

E
[

V̄p(i)
∣∣ W∗

i , Xi, X̄p∗(i)
] = g∗

2
(
Xi, X̄p∗(i)

)
, (19)

where g∗
2

(
Xi, X̄p∗(i)

) def≡ E
[

V̄p(i) − V̄p∗(i)
∣∣ Xi, X̄p∗(i)

] + g2
(
Xi,

X̄p∗(i)
)

is unrestricted.
The experiment-generated restrictions-Equations (10)–

(12)—in conjunction with our two (informally testable)
assumptions about deviations from the experiment protocol—
Assumptions 1 and 2—together imply the following conditional
moment restriction:

E
[

Ui + Vi + ρV̄p(i)
∣∣ W∗

i , Xi, X̄p∗(i)
]

= g1
(
Xi, X̄p∗(i)

) + ρg∗
2

(
Xi, X̄p∗(i)

)
. (20)

We wish to emphasize two features of restriction (20). First, the
conditioning variables are assigned peer and teacher attributes,
not their realized counterparts. This reflects our strategy of
using assignment constructs as instruments. Second, any func-
tion of W∗

i , as well as interactions of such functions with func-
tions of Xi and X̄p∗(i) do not predict the composite error Ui +
Vi + ρV̄p(i) conditional on Xi and X̄p∗(i); hence, such terms are
valid instrumental variables.

More specifically we redefine h to equal

h
(
Xi, X̄p∗(i), X̄p(i)

) def≡α + X′
iβ + g1

(
Xi, X̄p∗(i)

) + X̄′
p(i)γ

+ ρg∗
2

(
Xi, X̄p∗(i)

) + (
Xi ⊗ X̄p(i)

)′
ζ

(21)

and Ai to equal

Ai
def≡ (

Vi − g1
(
Xi, X̄p∗(i)

)) + ρ
(
V̄p(i) − g∗

2
(
Xi, X̄p∗(i)

)) + Ui.
(22)

Equations (7), (21), and (22) yield an outcome equation of

Yi = W′
iδ + (Xi ⊗ Wi)

′ η + (
Wi ⊗ X̄p(i)

)′
λ

+ h
(
Xi, X̄p∗(i), X̄p(i)

) + Ai. (23)

Condition (20) implies that Ai is conditionally mean zero given
Xi, X̄p∗(i) and W∗

i .
Summarizing, the experimentally-induced restrictions (10),

(11), and (12), and our Assumptions 1 and 2 together imply that

E
[

Ai| Xi, X̄p∗(i), W∗
i
] = 0. (24)

The estimation simplifies if we impose a restriction on the
peer attrition/noncompliance that is similar to Assumption 2,
but is on the observable peer average:

E
[
X̄p(i) − X̄p∗(i)

∣∣ Xi, X̄p∗(i), W∗
i
] = E

[
X̄p(i) − X̄p∗(i)

∣∣ Xi, X̄p∗(i)
]

.
(25)

This restriction is directly testable. By Equation (25),

E
[

X̄p(i)
∣∣ Xi, X̄p∗(i), W∗

i
] = E

[
X̄p(i)

∣∣ Xi, X̄p∗(i)
]

.

If restriction (25) holds the outcome equation is as in (23), but
with a redefined nonparametric h that is a function of Xi and
X̄p∗(i) only:

h
(

Xi, X̄p∗(i)
) def≡ α + X′

iβ + g1
(

Xi, X̄p∗(i)
)

+ E

[
X̄p(i)

∣∣∣ Xi, X̄p∗(i)
]′

γ

+ ρg∗
2

(
Xi, X̄p∗(i)

)
+

(
Xi ⊗ E

[
X̄p(i)

∣∣∣ Xi, X̄p∗(i)
])′

ζ ,
(26)

and Ai is

Ai
def≡ (

Vi − g1
(
Xi, X̄p∗(i)

)) + ρ
(
V̄p(i) − g∗

2
(
Xi, X̄p∗(i)

))
+ Ui + (

X̄p(i) − E
[

X̄p(i)
∣∣ Xi, X̄p∗(i)

])′
γ

+ (
Xi ⊗ (

X̄p(i) − E
[

X̄p(i)
∣∣ Xi, X̄p∗(i)

]))′
ζ . (27)

The conditional moment restriction in Equation (24) also
holds for this error.

Equations (23) and (24) jointly define a partially linear model
with an endogenous parametric component. This is a well-
studied semiparametric model (see, e.g., Chen, Linton, and
Van Keilegom 2003). The parameters δ, η, and λ are identified;
h

(
Xi, X̄p∗(i)

)
is a nonparametric nuisance function.

We implement the partial linear IV estimator using the fol-
lowing approximation for h(x, x̄):

h
(
Xi, X̄p∗(i)

) ≈ X′
ib + X̄′

p∗(i)d + (
Xi ⊗ X̄p∗(i)

)′ f .

For this approximation we estimate δ, η, and λ by linear IV fit of
Yi onto a constant, Xi, X̄p∗(i),

(
Xi ⊗ X̄p∗(i)

)
, Wi, (Xi ⊗ Wi), and(

Wi ⊗ X̄p(i)
)

using the excluded instruments W∗
i ,

(
Xi ⊗ W∗

i
)
,

and
(
W∗

i ⊗ X̄p∗(i)
)
. Note that both assigned and realized peer

groups enter the main equation.
As in the case with perfect compliance, we do not identify β ,

γ , and ζ , reflecting the inherent inability of the MET experiment
to inform peer group effects. Nevertheless knowledge of δ, η,
and λ is sufficient to identify the class of reallocation effects we
focus upon.
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3. Empirical Implementation and Results

3.1. Data and Sample

The MET study was conducted during the 2009/2010 and
2010/2011 school years in elementary, middle, and high schools
located in six large urban school districts in the United States.
Its goal was to examine determinants and consequences of
teacher quality and teaching practices. In the first study year,
MET researchers collected baseline information on teaching
practices for each teacher and baseline performance measures
for each student. Prior to the second study year, the teachers
were randomly assigned to pre-composed classrooms within
school-by-grade-by-subject cells (henceforth “randomization
blocks”). In many of the elementary schools, the randomization
took place within school-by-grade cells in practice to ensure
that a given classroom would be taught by the same teacher in
both math and ELA. Randomization blocks typically consisted
of 2–3 classrooms each, and classroom composition was not
manipulated as part of the study. For details about the study
design, see White et al. (2019) and Kane et al. (2013).

As a measure of teaching practices, we use Danielson’s (2011)
“Framework for Teaching” (FFT) measure, collected at baseline
(school year 2009/2010). The FFT seeks to capture “what teach-
ers should know and be able to do in the exercise of their profes-
sion” (Danielson 2011). Its focus lies on the teachers’ ability to
actively engage the students in the learning process. The FFT
is an observational measure: teachers’ classroom interactions
were video-taped at different points in time during the school
year, four times on average in the baseline year. Subsequently,
these videos were rated—in eight different rubrics—by trained
raters on a four-point scale (unsatisfactory, basic, proficient,
distinguished). We aggregate the ratings across rubrics, videos,
and raters. The FFT is positively correlated with a range of
teacher quality measures (see Table C.3 in the supplementary
materials). We also conducted robustness checks using alterna-
tive measures of teacher quality. The results are similar across
the different measures (see Section B.2.2 in the supplementary
materials).

As outcome measures we use students’ 2010/2011 test scores
in math and ELA. The scores are based on students’ rank in end-
of-year state tests and provided in the data as z-scores, that is,
they have a mean of zero and a unit standard deviation within
each district, subject, and grade.

The dataset also includes background characteristics from
school district records for students (age, gender, race/ethnicity,
special-education status, free/reduced-price lunch eligibility,
gifted status, and whether a student is an English language
learner) and for teachers (education, teaching experience in the
district). Through section identifiers, we can match students to
their classroom peers.

In constructing the estimation sample, we closely fol-
low Garrett and Steinberg (2015). We restrict the sample to
all elementary- and middle-school students (grades 4–8) who
took part in the randomization. The final sample consists of
about 8500 students and 614 teachers in math and of about
9600 students and 649 teachers in ELA (see Section C in the
supplementary materials for details).

We discretize both teacher FFT and students’ baseline test
scores. The FFT is on average 2.5 in math and 2.6 in ELA, which

corresponds to a rating between “basic” and “proficient.” We
set cutoffs at 2.25 and 2.75 (see Figure A.1 in the supplemen-
tary materials); using this categorization, 65% of randomization
blocks in math and 70% of randomization blocks in ELA include
teachers with different levels of FFT (e.g., both a low- and a
middle-FFT teacher). The results are not sensitive to the exact
position of the cutoffs. Similarly, we split students’ 2009/2010
baseline test scores into three bins, corresponding to terciles of
the z-score distribution. To include classroom peers into the
analysis, we compute the fraction of each student’s classmates
with high, middle, and low baseline test scores (leave-own-
out means). Some teachers and students switched classrooms
or schools after the researchers had determined the random
assignment. This was partly due to planning uncertainty: the
random assignment took place several weeks before the start of
the school year, when the classroom and teacher rosters were
still subject to change (see Section C.1 in the supplementary
materials for details). In the sample, 69% of the students in math
and 73% of the students in ELA were actually taught by their
randomly assigned teachers.

3.2. Tests of Identifying Assumptions and Restrictions

To test whether the randomization was successful in balancing
student characteristics across teachers with different levels of
FFT we regress the FFT of a student’s assigned teacher on
the student’s own characteristics, controlling for randomization
block fixed effects. None of the student characteristics predict
assigned teachers’ FFT, individually or jointly, which confirms
that the randomization indeed worked (see Table A.1 in the
supplementary materials).

Covariate balance, however, is not a sufficient condition to
identify reallocation effects under noncompliance by both stu-
dents and teachers (see Section 2). Assumption 1 requires that
own and assigned peer and teacher observables should not pre-
dict the difference between realized and assigned unobserved
teacher quality. We assess the plausibility of this assumption by
using those teacher background characteristics that are not part
of the model as replacements for the unobserved quality of a
teacher: a teacher’s demographics, experience, and education.
We regress the difference between realized and assigned teacher
characteristics on the student’s baseline test score, the FFT of
the assigned teacher, and the average baseline test score of the
assigned peers. Consistent with Assumption 1, these variables
do not jointly predict differences between the characteristics of
the assigned and realized teacher in any of the regression fits (see
Table A.2 in the supplementary materials).

Similarly, we assess the plausibility of Assumption 2. The
assumption states that differences between realized and assigned
unobserved peer quality cannot be predicted by assigned
teacher observables, conditional on own baseline achievement
and the baseline achievement of assigned peers. We regress
differences between the assigned and realized characteristics of
classroom peers onto the FFT of the assigned teacher, control-
ling for own baseline test scores and assigned peers’ average
baseline test scores. Consistent with Assumption 2, teacher
FFT does not predict differences between the characteristics
of the assigned and realized peers (see Tables A.3 and A.4 in the
supplementary materials).
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Finally, we test restriction (25), which implies that the base-
line test scores of realized peers cannot be predicted by assigned
teacher FFT. We regress the baseline test scores of realized peers
onto a student’s baseline test score, the baseline test scores of
her assigned peers, and the FFT of her assigned teacher. We find
that this restriction also holds in the data (see Table A.5 in the
supplementary materials).

3.3. Computation

3.3.1. Computation of the Optimal Allocation
What is meant by an “optimal” assignment depends on the
objective function. We choose to maximize aggregate outcomes
(i.e., the sum of all students’ test scores). This is a natural point of
departure since policy analyses often start with the computation
of average effects. Moreover, it is straightforward to compute,
justifiable from a utilitarian perspective, and easy to interpret.
Our analysis can be modified to accommodate other objective
functions. In practice, for example, school principals may care
about both the aggregate outcome as well as inequality. Our
intention is not to advocate for maximization of the aggregate
outcome in practice; rather this makes our analysis comparable
to that of other educational policy evaluations. We begin by esti-
mating the parameters of the educational production function
based on Equation (23), separately for math and ELA. Since
randomization was carried out within randomization blocks,
we additionally include randomization block fixed effects in
this regression model. We estimate the model’s parameters by
the method of instrumental variables (IV). We then use the
estimated parameters, specifically δ̂, η̂, and λ̂, to compute three
counterfactual outcomes for each student i, that is, her pre-
dicted outcome when taught by a low-, middle-, or high-FFT
teacher, leaving the original classroom composition unchanged.
Aggregated to the classroom level this yields three counterfac-
tual classroom-level test score aggregates. By aggregating the
counterfactual outcomes to the classroom level, we transform
the assignment problem from a many-to-one matching problem
to a one-to-one matching problem. This approach is suitable
because the configuration of students across classrooms remains
fixed; we only consider the effects of reassigning teachers across
existing classrooms of students. The one-to-one matching prob-
lem is a special linear program, a transportation problem, which
is easily solvable.

We impose a few additional constraints to make the reallo-
cation exercise realistic. First, we do not allow teachers to be
reassigned across districts or across school types (e.g., to move
from an elementary to a middle school). We also present, as a
sensitivity check, a version of the allocation where we only allow
teachers to be reassigned within their randomization block (see
Section B.2 in the supplementary materials). Second, there are
a few teachers that teach several sections of a class. In this case,
we treat these sections as clusters and allocate one teacher to all
sections in each such cluster.

In addition to the optimal assignment, we also compute a
“worst” possible assignment, that is, an assignment that mini-
mizes aggregate test scores. The difference between the aggre-
gate outcome for the best and worst assignment is the maximal
reallocation gain. This provides an upper bound on the magni-
tude of student achievement gains that teacher reassignments

based on FFT and prior student achievement might yield in
practice.

3.3.2. Computation of Average Reallocation Effects
An individual reallocation effect, or reallocation gain, is defined
as the difference between an individual student’s outcome under
two assignments. For example, one can compute, for each stu-
dent, Ŷi(W̃opt

i ), the predicted outcome under the optimal allo-
cation, where W̃opt

i takes the values wL, wM , or wH , depending
on whether the student would be assigned to a low-, middle-,
or high-FFT teacher in an optimal allocation. Similarly, one can
compute the same parameter for each student under the status
quo, which we denote as Ŷi(Wi). An individual reallocation
gain can then be computed as the difference between these two
outcomes, Ŷi(W̃opt

i ) − Ŷi(Wi).
These individual gains can be aggregated in many ways to

create policy-relevant parameters. We define our key parameter
of interest, the average reallocation effect, as

ÂRE = 1
N

N∑
i=1

[
Ŷi(W̃opt

i ) − Ŷi(Wi)
]

. (28)

We also consider three other parameters, (i) conditional aver-
age reallocation effects, that is, average reallocation effects for
students with varying baseline characteristic x (here, students
with low, middle, and high baseline test scores), (ii) the realloca-
tion effect conditional on being reassigned, and (iii) the realloca-
tion effect when comparing the optimal to the worst allocation.
See Section D.3 in the supplementary materials for a formal
definition of these parameters. Notice that, when computing
the reallocation effects, we abstract from noncompliance to the
optimal allocation. That is, we compare the status quo outcome
to the outcome of the optimal allocation under the assumption
that there is full compliance to the optimal allocation. It is
difficult to predict the degree and nature of noncompliance
patterns in the counterfactual scenario, because the experiment
we analyze is not a reallocation experiment. The reallocation
effects might be smaller in practice due to noncompliance of
teachers or students.

3.3.3. Inference
We use the Bayesian bootstrap to quantify our (posterior) uncer-
tainty about AREs. We treat each teacher-classroom pair as an
iid draw from some unknown (population) distribution. Fol-
lowing Chamberlain and Imbens (2003), we approximate this
unknown population by a multinomial, to which we assign an
improper Dirichlet prior. This leads to a posterior distribution
which (i) is also Dirichlet and (ii) conveniently only places
probability mass on data points observed in our sample. Since
our approach to inference is Bayesian the “standard errors” we
present for our ARE estimates summarize dispersion in the
relevant posterior distribution, not variability across repeated
samples. Given that our primary exercise involves solving a
social planning problem, the Bayesian approach is both prin-
cipled and convenient.

We emphasize that our measures of parameter uncertainty
have unknown frequentist properties. Consider a scenario in
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Table 2. IV regression results of the 3 × 3 model.

(1) (2) (3) (4) (5) (6)

A. Only teacher B. Full model C. Without
effects teacher × peer

interactions
Math ELA Math ELA Math ELA

δ FFT middle 0.069 −0.029 −0.145 −0.219 0.027 −0.082
(0.053) (0.048) (0.138) (0.173) (0.060) (0.059)

FFT high 0.038 −0.058 −0.547 −0.137 −0.155 −0.154∗
(0.067) (0.065) (0.380) (0.203) (0.103) (0.083)

η FFT middle
× baseline middle 0.040 0.057 0.052 0.067

(0.060) (0.067) (0.060) (0.063)

× baseline high 0.015 0.076 0.050 0.097
(0.084) (0.081) (0.076) (0.082)

FFT high
× baseline middle 0.184∗∗ 0.150∗∗ 0.196∗∗ 0.127∗

(0.082) (0.074) (0.084) (0.072)

× baseline high 0.226∗∗ 0.187∗∗ 0.265∗∗ 0.149
(0.099) (0.092) (0.100) (0.095)

λ FFT middle
× fraction peers middle 0.318 0.288

(0.299) (0.401)

× fraction peers high 0.239 0.161
(0.205) (0.288)

FFT high
× fraction peers middle 0.641 0.227

(0.513) (0.389)

× fraction peers high 0.460 −0.355
(0.409) (0.343)

β Baseline middle 0.888∗∗∗ 0.739∗∗∗ 0.843∗∗∗ 0.699∗∗∗ 0.840∗∗∗ 0.682∗∗∗
(0.077) (0.084) (0.092) (0.096) (0.092) (0.094)

Baseline high 1.622∗∗∗ 1.555∗∗∗ 1.578∗∗∗ 1.503∗∗∗ 1.550∗∗∗ 1.470∗∗∗
(0.103) (0.105) (0.124) (0.118) (0.119) (0.115)

R2 0.617 0.554 0.616 0.552 0.617 0.555
N 8534 9641 8534 9641 8534 9641

Note: The dependent variables are subject-specific test score outcomes in math and ELA. The instrumental variables are based on assigned teacher FFT (Panels A–C) and
assigned peer baseline test scores (Panel B). All regressions control for the h(x, x̄) function (see Section 2) and for randomization block fixed effects (239 randomization
blocks in math and 252 randomization blocks in ELA). Analytic standard errors, clustered by randomization block, are in parentheses.∗∗∗significant at the 1%-level ∗∗significant at the 5%-level ∗significant at the 10%-level.

which there are no actual reallocation effects, as when, for
example, the educational production function is additively sep-
arable in student and teacher attributes. In this case the aver-
age outcome at the estimated optimal assignment is, essen-
tially, the maximum of a vector of mean zero random variables.
This maximum will, in small samples, be biased above the true
effect of zero. The frequentist coverage properties of Bayesian
credibility sets will also likely be poor in such a setting (see
Graham, Imbens, and Ridder 2007; Graham 2011; Andrews,
Kitagawa, and McCloskey 2021, for related examples, discussion
and results). Developing tractable inference methods for the
value function of linear programs is an ongoing area of research
(e.g., Hsieh, Shi, and Shum 2022).

3.4. Results

3.4.1. Regression Results
In Table 2 we report IV estimates of our preferred model with
three levels of teacher FFT and three levels of student baseline
achievement. This corresponds to Equation (23) with both Wi
and Xi consisting of dummy variables for middle and high FFT
and baseline test scores, respectively. We estimate the model
separately for math and ELA test scores and include school-by-
grade fixed effects. Section D.1 in the supplementary materials
displays the full regression specification.

In this specification, the teacher FFT main effects are
insignificant. We do, however, find complementarity between
teacher FFT and student baseline scores. These are significant
for the high-FFT teachers (i.e., teachers with a “proficient” score
on average). Students with middle or high baseline test score
levels score significantly higher on end-of-year achievement
tests when matched with a high-FFT teacher, compared to
students with low baseline test scores (see Table 2, columns 3–6).

To compute optimal assignments and average reallocation
effects, we use the IV estimates presented in columns 5–6 of
Table 2. These specifications omit the FFT-by-peer composition
interaction terms, whose coefficients are poorly determined in
all specifications (whether fitted by IV or OLS). Omitting these
terms has little effect on either the location or the precision of the
coefficients on the FFT-by-baseline interactions. In Tables A.8
and A.9 in the supplementary materials we also present AREs
based upon the specifications in columns 3–4 of Table 2. These
ARE estimates are larger, albeit less precisely determined. As an
additional check, we also compute ITT-based AREs, which are
smaller but more precisely estimated than the AREs based on the
IV estimates (see Section B.2.4 in the supplementary materials).

3.4.2. Average Reallocation Effects
Our primary reassignment policy considers reassignments of
teachers across classrooms within districts and schooling levels
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Table 3. Average reallocation gains in math.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Optimal versus status quo

A.I Full sample A.II Conditional on being reallocated
All students High Middle Low All students High Middle Low

Gain 0.017 0.028 0.012 0.014 0.036 0.059 0.028 0.026
SE (0.006) (0.014) (0.008) (0.011) (0.012) (0.029) (0.019) (0.019)
N 8534 2332 3108 3094 4107 1121 1380 1606

Panel B. Optimal versus worst allocation

B.I Full sample B.II Conditional on being reallocated
All students High Middle Low All students High Middle Low

Gain 0.040 0.072 0.019 0.038 0.060 0.103 0.032 0.053
SE (0.012) (0.034) (0.015) (0.026) (0.019) (0.048) (0.022) (0.037)
N 8534 2332 3108 3094 5746 1626 1912 2208

Note: The table shows average reallocation gains (optimal versus random assignment in Panel A and optimal versus worst assignment in Panel B). The gains are expressed
in test score standard deviations. The computations are based on a 3 × 3 model without teacher-by-peer interactions (see Table 2, column 5). The results are presented
separately for the full sample of students (columns 1–4) and for the sample of classrooms that would get a new teacher as a result of the reallocation (columns 5–8). The
reassignments are carried out within school types and districts. Standard errors are in parentheses and computed using the Bayesian bootstrap with 1000 replications
(see Section 3.3.3). High/middle/low: students in the top/middle/bottom tercile of the baseline test score distribution.

(elementary and middle schools). Under this scenario we find
that, when moving from the status quo to an optimal assign-
ment, 49% of the students in the math sample and 47% of the
students in the ELA sample are assigned to a new teacher.

In the math sample (Table 3), the optimal allocation improves
average test scores by 1.7% of a test score standard deviation
compared to the status quo. This effect is precisely determined
with a Bayesian bootstrap standard error of 0.6%. The reported
effects are largely driven by students with high baseline test
scores. These students gain 2.8% of a test score standard devi-
ation on average; students with middle and low baseline test
scores, in contrast, gain 1.2% and 1.4% of a test score standard
deviation, respectively (on average). Since only half of the stu-
dents experience a change in their teacher, the average effect
represents an equal-weighted mixture of a zero effect and a
positive effect on those students who do experience a change in
teachers. The average effect for the latter group is 3.6% of a test
score standard deviation (Panel A.II, SE = 1.2%).

The comparison of an optimal allocation with a worst alloca-
tion yields improvements that are about twice as large. Relative
to a worst allocation, an optimal allocation improves test scores
by 4.0% of a standard deviation on average (SE = 1.2%). The
gains are 7.2% of a standard deviation for students with high
baseline test scores and 1.9% and 3.8% of a standard deviation
for students with middle and low baseline test scores, respec-
tively. If one considers only those students who are reassigned
to a new teacher, the reallocation effect amounts to 6.0% of a
standard deviation on average (Panel B.II, SE = 1.9%).

One way to benchmark the magnitude of these AREs is to
compare them with the effects of hypothetical policies aimed at
improving teacher value-added measures (VAMs). Such policies
are controversial, as is the evidence marshaled to support them.
Here we offer no commentary on the advisability of actually
adopting VAM-guided teacher personnel policies; nor do we
offer an assessment of VAM studies. Rather we simply use these
studies, and the policy thought experiments they motivate, to
benchmark the ARE findings.

Teacher value-added is typically conceptualized as an
invariant intercept-shifter, which uniformly raises or lowers the
achievement of all students in a classroom. In this framework
replacing a low value-added teacher with a high one will

raise achievement for all students in a classroom. Rockoff
(2004) estimates that the standard deviation of the population
distribution of teacher value-added (in a New Jersey school
district) is around 0.10 test score standard deviations in
both math and reading. Recent studies find somewhat higher
estimates: Chetty, Friedman, and Rockoff (2014) estimates that
the standard deviation of teacher value-added is 0.16 in math
and 0.12 in reading; similarly, Rothstein (2017) finds values of
0.19 in math and 0.12 in reading.

Using a standard deviation of 0.15 we can consider the effect
of a policy which removes the bottom τ × 100% of teachers,
sorted by VAM, and replaces them with teachers at the τ̃ th
quantile of the VAM distribution. Under normality the effect of
such a policy on average student achievement is to increase test
scores by

(1 − τ) σ
φ

( qτ

σ

)
1 − �

( qτ

σ

) + σ�−1 (τ̃ )

standard deviations. Setting τ = 0.05 and τ̃ = 0.75 this
expression gives an estimate of the policy effect of 0.021 (i.e.,
2.1% of a test score standard deviation). This is comparable to
the average effect on math achievement associated with moving
from the status quo MET assignment to an optimal one. In
practice correctly identifying, and removing from classrooms,
the bottom 5% of teachers would be difficult to do. Replacing
them with teachers in the top quartile of the VAM distribution
even more so (see, e.g., Staiger and Rockoff 2010; Jackson, Rock-
off, and Staiger 2014, for discussions of VAM-guided policies).
Contextualized in this way the AREs we find are large.

An attractive feature of the policies we consider is that they
are based on measurable student and teacher attributes, not
noisily measured latent ones. At the same time we are mindful
that most school districts would not find it costless to reallocate
teachers freely across classrooms and schools (see Glazerman
et al. 2013). Moreover, observational measures such as the FFT
can also contain measurement error. Further research is needed
to determine both the costs of reassignment policies and the set
of variables that such policies should be based upon.

For ELA achievement we find smaller reallocation effects
(see Table A.10 in the supplementary materials). Moving from



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 1339

the status quo to an optimal allocation is estimated to raise
achievement by 0.8% of a test score standard deviation (SE =
0.6%). As with math, these gains are concentrated among stu-
dents with high baseline scores who are assigned a new teacher.
These students experience an average gain of 5% of a test score
standard deviation (SE = 2.5%).

In sum, the optimal assignment we consider yields hypotheti-
cal improvements in test score outcomes across the distribution
of student baseline achievement. Yet, while the gains are large
for students with high baseline test scores—up to 10% of a
standard deviation for students with high baseline test scores in
math—for students with middle and low baseline test scores, the
gains are smaller. Consequently, the reallocation does not nar-
row achievement gaps between students with high baseline test
scores and those with middle or low baseline test scores. More-
over, reallocations seem to matter more in math, compared to
ELA. This is in line with the value-added literature, which con-
sistently reports higher value-added in math compared to ELA.

4. Conclusion

We provide an econometric framework that allows us to
semiparametrically characterize complementarity between
teaching practices and student baseline test scores. Our
framework exploits the random assignment of teachers to
classrooms available in the MET dataset while formally dealing
with noncompliance by both teachers and students.

The results provide strong evidence of complementarity
between student baseline test scores and teacher practices.
This complementarity, if taken into account when assigning
teachers to classrooms, appears to make a difference in students’
performance across the distribution of baseline achievement.
Teacher reassignments that maximize the average test score,
however, will not close the achievement gap between students
with low versus high baseline achievement levels. They actually
widen this achievement gap. A different objective function,
one that values equity as well as efficiency, may be preferred
in practice. It is also possible that assignments based on other
student and teacher attributes (e.g., race or gender) might both
raise average achievement and narrow achievement gaps.

Supplementary Materials

The authors provide the following supplementary materials:

1. An online appendix containing supplementary results, information on
the data and sample characteristics, and details about the empirical
procedures.

2. A replication package containing descriptions and code to reproduce
Tables 2 and 3 from the original data.
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