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a b s t r a c t

Let Y be an outcome of interest, X a vector of treatment measures, and W a vector of pre-
treatment control variables. Here X may include (combinations of) continuous, discrete,
or non-mutually exclusive ‘‘treatments’’. Consider the linear regression of Y onto X
in a subpopulation homogeneous in W = w (formally a conditional linear predictor).
Let b0 (w) be the coefficient vector on X in this regression. We introduce a semipara-
metrically efficient estimate of the average β0 = E [b0 (W )]. When X is binary-valued
(multi-valued) our procedure recovers the (a vector of) average treatment effect(s).
When X is continuously-valued, or consists of multiple non-exclusive treatments, our
estimand coincides with the average partial effect (APE) of X on Y when the underlying
potential response function is linear in X , but otherwise heterogeneous across agents.
When the potential response function takes a general nonlinear/heterogeneous form, and
X is continuously-valued, our procedure recovers a weighted average of the gradient
of this response across individuals and values of X . We provide a simple, and semi-
parametrically efficient, method of covariate adjustment for settings with complicated
treatment regimes. Our method generalizes familiar methods of covariate adjustment
used for program evaluation as well as methods of semiparametric regression (e.g., the
partially linear regression model).

© 2021 Elsevier B.V. All rights reserved.

Let Y be a scalar-valued outcome of interest, X a K × 1 vector of policy variables, and W a J × 1 vector of additional
controls. For example Y might equal hours worked, X include the real wage rate and total unearned income (K = 2), and
W be a vector of demographic measures capturing heterogeneity in preferences for work (e.g., Pencavel, 1986, Section
4). The goal is to summarize how Y – labor supply – covaries with X – the wage rate and unearned income – ‘‘holding
the controls W fixed’’. In a second example, Y might be an end-of-year student mathematics achievement measure, X
a vector containing (i) number of days absent from school, (ii) class size and (iii) an indicator for whether the student
received supplemental tutoring. Here the vector W might include beginning of school year joint predictors of Y and X
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e.g., prior mathematics achievement, socioeconomic background, health indicators, and known determinants of class size
nd tutoring assignment used by the school). The goal is to summarize how math achievement covaries with attendance,
lass size and supplemental tutoring conditional on W (cf., Gottfried and Kirksey, 2017).
Following the prototype established by Yule (1899) over one hundred years ago, social scientists typically report the

oefficient on X in the (long) least squares fit of Y onto a constant, X , and W for this purpose.
When X is a scalar binary variable, the econometrician can choose from – in addition to least squares – an ever more

elaborate menu of covariate adjustment methods (see Imbens and Rubin, 2015 for a recent textbook introduction). Many
of these methods extend naturally to settings where X is multi-valued (e.g., Cattaneo, 2010).

When X is continuously-valued, and/or consists of multiple distinct policy variables (K ≥ 2), options are fewer (cf.,
Wooldridge, 2010, Chapter 21.6.3). The partially linear regression (PLM) model

Y = X ′β0 + h0 (W )+ U, E [U |W , X] = 0, (1)

represents one semiparametric generalization of (long) linear regression. Chamberlain (1986), in an influential but
never published paper, introduced an estimator for β0 in (1) (cf., Robinson, 1988). In later work he characterized its
semiparametric efficiency bound (SEB) (Chamberlain, 1992).

Partially linear regression is widely, albeit heuristically, used in empirical work. Typically researchers proceed by (i)
choosing W to be a rich vector of basis functions in the underlying controls (e.g., a vector of polynomial or piecewise
polynomial terms) and then (ii) estimating β0 by least squares. With discretely-valued control variables a saturated
specification for h0 (W ) is possible, at least when utilizing a very large dataset (e.g., Angrist and Krueger, 1999, Section
2.3.1). A principled variant of this general approach is embodied in the E-Estimation algorithm of Newey (1990) and Robins
et al. (1992).

In this paper we propose a different approach to covariate adjustment. Consider a subpopulation homogeneous in
W = w. Within this subpopulation we compute the linear regression of Y onto a constant and X (formally a conditional
linear predictor as in Wooldridge, 1999). Let b0 (w) be the coefficient on X in the conditional linear regression for the
subpopulation homogeneous in W = w. We propose a method for identifying and efficiently estimating the average
regression coefficient

β0 = E [b0 (W )] . (2)

The average is over the marginal distribution of controls, W .
In the absence of controls, the relationship between the linear predictor slope coefficient and the gradient of the

(possibly nonlinear) conditional expectation function (CEF) of Y given X = x is well-understood (e.g., Goldberger,
1991; Yitzhaki, 1996). In the presence of controls, this relationship is rather more complicated (cf., Angrist, 1998;
Sloczynski, 2021). Our focus on averages of conditional linear predictor coefficients allows for conditioning on W , while
also preserving the interpretative transparency of unconditional linear analyses. That is, β0, as we demonstrate below, is
easy to interpret.

When X is binary-valued (multi-valued) β0 coincides with the (a vector of) average treatment effect(s); estimands
familiar from the program evaluation literature (e.g., Hahn, 1998; Imbens, 2000). These estimands have causal in-
terpretations under certain conditions. Modestly extending the analysis of Wooldridge (2004), we show that this
causal interpretation generalizes under a (i) heterogeneous random coefficients potential outcome structure and (ii) an
unconfoundedness-type assumption. These assumptions coincide with their program evaluation counterparts when X is
binary- or multi-valued. Our semiparametric model includes both the program evaluation model and the partially linear
regression model as special cases.

Our work is also connected to the varying coefficient model literature of Hastie and Tibshirani (1993), Fan and Zhang
(1999) and others. Prior work in this area focuses on pointwise estimation of b0 (w), while we focus on (efficient)
estimation of the average β0 = E [b0 (W )]. Finally recent independent work by Hirshberg and Wager (2020) and Newey
and Stouli (2020) also considers problems which partially overlap with the ones considered here. Specifically Newey and
Stouli (2020) consider identification of our model for the special case where X consists of a vector of mutually exclusive
treatments. Hirshberg and Wager (2020) consider a somewhat more general class of estimands and focus on globally
efficient estimation. We utilize the special structure of our problem to motivate locally efficient approaches to estimation.

The relationship of our work with that of Wooldridge (2004) is as follows.1 We both study the same functional of
the joint distribution of W , X and Y (see Eq. (7)). Relative to Wooldridge (2004) we provide an average partial effect
interpretation of this estimand under (i) weaker assumptions when maintaining a correlated random coefficient potential
outcome structure and (ii) a new weighted average partial effect interpretation under a general potential response function
structure. These are useful, but relatively modest generalizations. More significantly we (i) provide distribution theory for
the estimator proposed by Wooldridge (2004), (ii) characterize the SEB for β0, and (iii) introduce a new locally efficient
estimator. The procedure proposed by Wooldridge (2004) is inefficient.

Another feature of our estimator is computational simplicity. Let µ̂W =
1
N

∑N
i=1 Wi be the sample mean of W . A

ommon approach to modeling heterogeneous effects in applied work is to compute the least squares fit of Y onto a

1 The Wooldridge (2004) paper remains unpublished, but a textbook treatment of the material in it can be found in Chapter 21.6.3 of Wooldridge
(2010).
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onstant, W − µ̂W ,
(
W − µ̂W

)
⊗ X , and X . As is well-known from textbook treatments on interaction terms in linear

egression analysis, centering the control variable vector, W , about its mean in this way ensures that the coefficient
n X captures an average effect. This approach essentially coincides with Oaxaca–Blinder type methods of covariate
djustment popular in labor economics (e.g., Kline, 2014). One variant of our procedure involves computing the exact
ame regression, but where X is instead instrumented with a particular function of its conditional distribution given W
i.e., of the ‘‘generalized’’ propensity score). Theorems 2 and 3 show that this small modification to a familiar estimation
rocedure delivers considerable gains.
The next section introduces our average linear regression model. We provide a statistical definition of β0 as well

s sets of assumptions under which it has a causal – average partial effect (APE) – interpretation. Section 2 presents
he semiparametric efficiency bound for β0. Section 3 presents the large sample properties of our estimator. Finally, in
ection 4, we connect our results with prior work on efficient estimation of average treatments effects as well as the
artially linear semiparametric regression model. We end our paper with a small simulation study in Section 5. All proofs
re collected in the Appendix or the supplemental materials.

. Average linear regression model

We begin with a conventional sampling assumption.

ssumption 1 (Random Sampling). Let
{(

W ′

i , X
′

i , Yi
)′}∞

i=1
be a sequence of independent and identically distributed random

draws from some population FW ,X,Y with E
[
Y 2
⏐⏐W = w

]
< ∞ and E

[
∥X∥

2
⏐⏐W = w

]
< ∞ for all w ∈ W.

The finite moment restrictions included in Assumption 1 ensure that a conditional linear predictor (CLP) is well-defined
for all w ∈ W.

Let

e0 (w) = E [X |W = w] (3)

be the conditional mean of X given W = w and

v0 (w) = V (X |W = w) (4)

the corresponding conditional variance. We also require that X vary conditional on W = w.

Assumption 2 (Overlap). For all w ∈ W and any non-zero column vector t , t ′v0 (w) t ≥ κ > 0.

Assumption 2 ensures that the CLP is uniquely defined. In the absence of conditioning it is equivalent to linear
independence of the elements of X . When X is binary v0 (W ) = e0 (W ) (1 − e0 (W ))with e0 (W ) = Pr (X = 1|W ) equal to
the propensity score; in this case Assumption 2 coincides with the familiar strong overlap assumption from the program
evaluation literature. More generally Assumption 2 implies that X varies conditional on W = w for all w ∈ W.

Under Assumptions 1 and 2 the conditional linear predictor is well-defined for all w ∈ W. Wooldridge (1999, Section
4) provides a self-contained introduction to conditional linear predictors. The following definition and lemma is taken
from Wooldridge (1999).

Definition 1 (Conditional Linear Predictor). The mean squared error minimizing linear predictor of Y given X conditional on
W = w, henceforth the conditional linear predictor (CLP), equals

E∗ [Y | X;W = w]
def
≡ a0 (w)+ X ′b0 (w) (5)

with

a0 (w)
def
≡ E [Y |W = w] − e0 (w)′ b0 (w) (6)

b0 (w)
def
≡ v0 (w)

−1 C (X, Y |W = w) .

It is straightforward to show that the prediction error U = Y−E∗ [Y | X;W ] is conditionally mean zero and conditionally
uncorrelated with X . This property of E∗ [Y | X;W ] will prove useful for what follows.

Lemma 1 (Wooldridge, 1999, Lemma 4.1). Let U
def
≡ Y −a0 (W )−X ′b0 (W ), then E [U |W = w] = 0 and E [XU |W = w] = 0

for all w ∈ W.
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I
dentification of the average regression slope

We begin by presenting a convenient representation of the average slope coefficient β0 = E [b0 (W )] in terms of the
joint distribution of

(
W ′, X ′, Y

)′. The most direct representation follows directly from (6):

β0 = E
[
v0 (W )−1 C (X, Y |W )

]
.

For our purposes, however, an alternative representation of β0 is more convenient; both for our semiparametric efficiency
bound (SEB) analysis and for the approach to estimation developed below. Using the law of iterated expectations and the
definition of conditional covariance we get, under Assumptions 1 and 2,

E
[
v0 (W )−1 (X − e0 (W )) Y

]
= E

[
v0 (W )−1 E [ (X − e0 (W )) Y |W ]

]
= E

[
v0 (W )−1 C (X, Y |W )

]
.

Applying definition (6) then gives our preferred estimand representation:

β0 = E
[
v0 (W )−1 (X − e0 (W )) Y

]
. (7)

Wooldridge (2004) emphasizes the coincidence between (7) and the average partial effect of X on Y associated with
a particular correlated random coefficients (CRC) potential outcomes structure. This endows β0 with causal meaning.
While we also develop this connection below, we wish to initially emphasize that (7) is also just one way of representing
a population average of conditional linear predictor coefficients. Under Assumptions 1 and 2 the expectation in (7) is
well-defined and β0 is simply a ‘‘statistical’’ estimand. We are interested in estimating it as precisely as possible.

Causal interpretation

In this subsection we show that (7) admits a causal interpretation under a particular treatment response model and
selection on observables type assumption. As noted earlier, this interpretation was previously emphasized by Wooldridge
(2004), but under stronger conditions than we maintain here.

Associated with each agent in the target population is an individual-specific potential response function, Y (x), which
maps counterfactual values of the input vector X into their corresponding (potential) outcomes. The observed outcome
coincides with the value of the potential response function at the observed input level X: Y = Y (X). We assume that
Y (x) is linear in x, but otherwise heterogeneous across individuals:

Y (x) = A + x′B, (8)

where A and B are an individual-specific intercept and slope vector respectively.
Eq. (8) allows for each individual to have their own potential response function, but restricts them to be linear in

X . When X is binary, or multi-valued, linearity is unrestrictive. For example, in the binary case, we have the potential
outcome under control (X = 0) and active (X = 1) treatment equal to Y (0) = A and Y (1) = A + B. In the multi-valued
treatment setting of Imbens (2000) and Cattaneo (2010), with X a vector of treatment indicators for K mutually exclusive
treatments, we have Y (0) = A and Y (k) = A + Bk for k = 1, . . . , K . In contrast, when X is ordered, continuously valued,
or includes multiple treatments/policies, linearity is restrictive.

Consider the following thought experiment: draw a unit at random and (exogenously) increase the value of the kth
component of X by one unit. The expected effect of this intervention is E [Bk]. In the binary- and multi-valued treatment
setting E [Bk] corresponds to an average treatment effect (ATE)

E [Bk] = E [Y (k)− Y (0)] .

More generally E [Bk] equals the average partial effect (APE) of a unit increase in Xk. This estimand was introduced in
a panel data setting by Chamberlain (1984); general expositions, with additional results, are available in Blundell and
Powell (2003) and Wooldridge (2005).

Under the following assumption, in addition to those introduced above, we can show that β0 coincides with the APE
vector, E [B].

Assumption 3 (Conditional Exogeneity). For all w ∈ W and k, l = 1, . . . , K, and under potential responses of the form given
in (8)

C (A, Xk|W = w) = C (B, Xk|W = w) = C (B, XkXl|W = w) = 0. (9)

Assumption 3 restricts the form of any dependence between the potential response function, Y (x) = A + x′B, and the
treatment vector actually chosen by the respondent, X . It is a conditional exogeneity or selection on observables type
assumption. To see this observe that when X is binary Assumption 3 coincides with the standard mean independence
assumption familiar from the program evaluation literature, implying that

E[Y (x)| X,W ] = E[Y (x)|W ].
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n the multi-valued treatment setting Assumption 3 also coincides with standard generalizations of the mean indepen-
ence assumption (cf., Imbens, 2000). See also Section 4.
When the linearity of (8) is restrictive, as occurs when X includes continuously-valued components, or non-mutually

xclusive binary inputs, Assumption 3 is less restrictive than other possible formulations of conditional exogeneity. For
xample, Wooldridge (2004, 2010) works with the identifying restrictions

E [X |W , A, B] = E [X |W ] = e0(W ), V (X |W , A, B) = V (X |W ) = v0(W ) (10)

hich imply (9), but are generally stronger. An even stronger notion of conditional exogeneity is

E [A| X,W ] = E [A|W ] , E [B| X,W ] = E [B|W ] . (11)

ssumption 3 is (apparently) the weakest assumption necessary to equate β0 with the average partial effect of X on Y
hen the potential response function takes form (8). The estimator we introduce below will remain consistent under the
tronger restrictions, (10) and (11), but will generally not be semiparametrically efficient in those cases. We elaborate
urther on this observation below.

roposition 1 (Average Partial Effect Identification). Under Assumptions 1–3 the average of the CLP coefficients, β0 =

[b0 (W )], and the average partial effect (APE), E [B], coincide:

β0 = E [B] .

roof. Wooldridge (2004) demonstrates the equality under the stronger restriction (10). Under Assumption 3, however,
he proof proceeds differently. Given the linear potential response (8) and by Lemma 1, we have the 1 + K conditional
oment restrictions

E [U |W = w] = E [A − a0 (W )|w] + E
[
X ′ (B − b0 (W ))

⏐⏐w] = 0

E [XU |W = w] = E [X (A − a0 (W ))|w] + E
[
XX ′ (B − b0 (W ))

⏐⏐w] = 0. (12)

nder Assumption 3 conditions (12) simplify to

{E [A|w] − a0 (w)} + e0 (w)′ {E [B|w] − b0 (w)} = 0
e0 (w) {E [A|w] − a0 (w)} + E

[
XX ′
⏐⏐w] {E [B|w] − b0 (w)} = 0

r, in matrix form,[
1 e0 (w)′

e0 (w) E
[
XX ′
⏐⏐w]

](
E [A|w] − a0 (w)
E [B|w] − b0 (w)

)
=

(
0
0

)
.

nder Assumption 2 the first matrix to the left of the equality is invertible for all w ∈ W. This implies that E [A|W = w] =

a0 (w) and E [B|W = w] = b0 (w) for all w ∈ W. The result follows by iterated expectations. □

Proposition 1 demonstrates, for example, that when W is a discrete random variable, we can write the average partial
effect, β0, as the weighted sum of each partial effect b0 (w) = E [B|W = w] with weights Pr (W = w).

Causal interpretation under misspecification

Angrist and Krueger (1999, Section 2.3.1) and Angrist and Pischke (2009, Chapter 3.3) emphasize that when X is a
continuously-valued random variable its slope coefficient in the linear predictor of Y onto a constant, X and the vector
f ‘‘saturated’’ controls admits a weighted average derivative interpretation when the potential response function takes
general nonlinear form (cf., Angrist et al., 2000, Lemma 5). Angrist and Krueger’s (1999) expression is also isomorphic
o the probability limit of the E-Estimator of Newey (1990) and Robins et al. (1992)

βE =
E [Y (X − e0 (W ))]
E [X (X − e0 (W ))]

(13)

hen the partially linear regression structure, Eq. (1), is incorrect.
In this section, using similar arguments to those appearing in Angrist et al. (2000, Lemma 5) and Graham et al. (2010,

emma A.1), we provide a representation result for β0 under a general potential response function.
Assume that the potential response function is nonlinear and heterogeneous such that Y (x) = h (x,U). Further

assume, stronger than Assumption 3, that U is conditionally independent of X given W = w for all w ∈ W. In this
setting, Blundell and Powell (2003) show that the partial mean EW [E [Y |W , X = x]] identifies the average structural
function (ASF) m (x) = EU [h (x,U)] when the support of W given X = x coincides with its marginal support. Newey
(1994) provides an explicit partial mean estimator and derives in asymptotic properties.
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Here we show that our average regression slope estimand, β0, can be expressed as a weighted average of the gradient
f h (X,U). This provides a causal interpretation of β0 under a general potential response function. To present this result
e replace Assumption 3 with:

ssumption 4 (Nonlinear Potential Response Function). (i) X is a continuous scalar random variable with bounded support
=
[
x, x
]
, (ii) the conditional density function of X given W = w is bounded and bounded away from zero for all

w, x) ∈ W × X, (iii) Y = h (X,U) with h (x, u) a continuously differentiable function of x for all (x, u) ∈ X × U and
(u) = h

(
x, u

)
finite for all u ∈ U, and (iv) U is conditionally independent of X given W = w for all w ∈ W.

Proposition 2 (Weighted Average Derivative Representation). Under Assumptions 1, 2 and 4

β0 = E
[
ω (W , X)

∂h (X,U)
∂x

]
here

ω (w, x) =
η (w, x)

f X |W (x|w)
(14)

η (w, x) =
E [X − e0 (W )|W = w, X ≥ x]

(
1 − F X |W (x|w)

)∫ x̄
x E [X − e0 (W )|W = w, X ≥ v]

(
1 − F X |W (v|w)

)
dv
. (15)

Proof. See the Supplemental Web Appendix. □

A key feature of the weighting function ω (w, x) is that its conditional mean, E [ω (W , X)|W = w], equals 1 for every
value of w ∈ W. Furthermore, Lemma A.1 of Graham et al. (2010) implies that, conditional on W = w, the weight given
to ∂h(X,U)

∂x is highest for those values of X near its conditional mean, E [X |W = w], and lowest for those at the boundary
of its support, x and x.

These features of the weights appearing in Proposition 2 imply the following intuitive interpretation: (i) for each value
f w ∈ W compute a weighted average of ∂h(X,U)

∂x , where the average emphasizes values of X near its conditional mean
iven W = w, (ii) average these (weighted average) gradients over the marginal distribution of W . This indicates that β0

nly differs from the unweighted average E
[
∂h(X,U)
∂x

]
due to variation in ω (W , X) within W = w cells. The contribution

of each subpopulation, defined in terms of the control, W , mirrors its density in the sampled population. Since W proxies
or U in this set-up we are averaging over the correct heterogeneity distribution.

More precisely, since E [ω (W , X)|W = w] = 1, we have that, using the definition of conditional covariance,

b0 (w)− E
[
∂h (X,U)
∂x

⏐⏐⏐⏐W = w

]
= C

(
ω (w, X) ,

∂h (X,U)
∂x

⏐⏐⏐⏐W = w

)
,

here, as earlier, b0 (w) is the conditional linear predictor slope vector. The bias of b0 (w) for E
[
∂h(X,U)
∂x

⏐⏐W = w
]

is therefore solely due to conditional covariance between the weight function and the gradient of interest within
subpopulations homogeneous in W = w. Under linearity this bias is, of course, zero. In general, since the weight ω (w, X)
is high when X is close to its conditional mean given W = w and low when it is toward the boundary of its support, the
bias will be upwards if the gradient tends to larger when X is near E [X |W = w] and downwards in the opposite case.

By conditional independence of X and U given W = w we further have, re-arranging the order of integration,

E
[
ω (w, X)

∂h (X,U)
∂x

⏐⏐⏐⏐W = w

]
=

∫ ∫
ω (w, x)

∂h (x, u)
∂x

f X |W (x|w) fU |W (u|w) dxdu

=

∫
η (w, x)E

[
∂h (x,U)
∂x

⏐⏐⏐⏐W = w

]
dx

where the last line follows from definitions (14) and (15). Averaging over the marginal distribution of W then gives the
alternative representation

β0 = E
[∫

η (W , x)E
[
∂h (x,U)
∂x

⏐⏐⏐⏐W] dx] ; (16)

onnecting β0 to the (gradient of the) average structural function (ASF) of Blundell and Powell (2003) (see also Chamber-
ain (1984) and Wooldridge (2005)). Specifically β0 is an average over the marginal distribution of W of weighted averages
f E
[
∂h(x,U)
∂x

⏐⏐W = w
]
. The weighted averages are over X and emphasize values near E [X |W = w]. In the present context

the ASF is m (x)
def
≡ EU

[
∂h(x,U)
∂x

]
and its average gradient is EX

[
∂m(X)
∂x

]
. Therefore if η (w, x) ≈ f X |W (x|w), then β0 will be

close to E
[
∂m(X) ]. In general, of course, they will differ.
X ∂x
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In contrast to the one for β0, the weight function appearing in the weighted average derivative representation result
f Angrist and Krueger (1999) or Angrist and Pischke (2009) for βE is only unconditionally mean zero. This implies that
E averages over the incorrect heterogeneity distribution as well as the incorrect policy variable distribution.

βE − E
[
∂h (X,U)
∂x

]
=E

[
C
(
ω (W , X) ,

∂h (X,U)
∂x

⏐⏐⏐⏐W)] (17)

+ C
(
E [ω (W , X)|W ] ,E

[
∂h (X,U)
∂x

⏐⏐⏐⏐W]) .
If the ultimate object of interest is the average derivative EX

[
∂m(X)
∂x

]
, then, relative to (17), a focus on β0 eliminates one

source of potential bias. Namely that the weight function may over- or under-emphasize various subpopulations defined
in terms of their value of the control variable vector W . In this case E [ω (W , X)|W ] may not equal one and the second
term to the right of the equality in (17) may be non-zero.2

Motivating β0

Our focus on averages of conditional linear predictor slope coefficients is motivated by a combination of principled
and pragmatic reasons.

First, the kitchen sink long regression remains a workhorse of everyday empirical social science research. Our model
extends kitchen sink regression in an easy to understand way. Relative to the partially linear regression model, our model
allows for heterogeneous responses of Y to variation in X; a feature likely to be both empirically relevant and a priori
attractive to researchers.

Second, β0 has a causal interpretation under additional assumptions. When the potential response function is linear,
but heterogeneous across agents, it coincides with an average partial effect (APE) under a selection on observables type
assumption. When X is binary- or multi-valued, as in the program evaluation literature, it coincides with the well-known
average treatment effect (ATE). Our causal model nests the usual one as a special case, but accommodates continuous
and/or multiple treatments as well (albeit under restrictions).

Third, in the presence of misspecification β0 coincides with a weighted average of the derivative of a general non-linear
potential response function. This weighted average derivative is more interpretable than existing representation results;
for example those of Angrist and Krueger (1999) for βE.

Fourth, as we show next, β0 is
√
N-estimable (or regularly identified). This is not the case for, say, a partial mean with

a continuous policy variable (e.g., Newey, 1994). Regular identification suggests that estimation is practically feasible and
we present one such feasible estimator below.

Ultimately the balance between ease of interpretation under various population assumptions and, as we show below,
ease of estimation, provides the strongest case for focusing on β0.

2. Semiparametric efficiency bound

Using the method of calculation outlined by Bickel et al. (1993) and Newey (1990), we derive the semiparametric
variance bound for β0 of,

I(β0)−1
= E [Ω0(W )] + V(b0(W )), (18)

where

Ω0(w) = E
[
v0(W )−1 (X − e0 (W ))UU ′

{
v0(W )−1 (X − e0 (W ))

}′
⏐⏐⏐W = w

]
.

The corresponding efficient influence function equals

ψeff
β (Z, β0, g0 (W ) , h0 (W )) =v0 (W )−1 (X − e0 (W ))

(
Y − a0 (W )− X ′b0 (W )

)
(19)

+ (b0 (W )− β0)

with Z =
(
W ′, X ′, Y

)′, g (W ) = (e(W ), v(W )) and h (W ) = (a (W ) , b (W )).

Theorem 1 (Semiparametric Efficiency Bound). The efficient influence function for β0 = E [b0 (W )] in the semiparametric
problem established by Definition 1 and Assumptions 1 and 2 equals (19).

Proof. See Appendix A. □

2 To be clear ω (W , X) are different functions in expressions (16) and (17); for its form in the latter case see Angrist and Krueger (1999) or Angrist
nd Pischke (2009).
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We also have the following corollary, which is similar to a result for the binary case due to Robins et al. (1994), Hahn
1998) and Chen et al. (2008). This corollary will be useful when we discuss locally efficient estimation in Section 3.

orollary 1 (Redundancy). Let f (x|w;φ) be a parametric family of conditional distributions for X given W with f0 (x|w) =

(x|w;φ) at some unique φ = φ0. The knowledge that f0 (x|w) is a member of the family f (x|w;φ) does not change the
emiparametric efficiency bound for β0.

roof. See the Supplemental Web Appendix. □

See Frölich (2004) and Graham et al. (2016) for additional intuition about results like Corollary 1.

ouble robustness property of the efficient influence function

Before introducing our estimator in the next section we highlight an important property of the efficient influence
unction for β0.

Consider replacing h0 (W ) = (a0 (W ) , b0 (W )) in (19) with the incorrect conditional linear predictor coefficients
∗ (W ) = (a∗ (W ) , b∗ (W )). Use the notation U∗ =

(
Y − a∗ (W )− X ′b∗ (W )

)
to emphasize that U∗ is the prediction

error associated with an arbitrary conditional linear predictor (which need not be the mean squared error minimizing
one). Note that U∗ will not be conditionally mean zero or conditionally uncorrelated with X (i.e., E [U∗|W ] ̸= 0 and
E [XU∗|W ] ̸= 0). Nevertheless, as long as e0 (X) and v0 (W ) equal the true conditional mean and variance of X given W ,
we have the pair of equalities, using iterated expectations,

E
[
v0 (W )−1 (X − e0 (W )) a∗ (W )

]
=0

E
[
v0 (W )−1 (X − e0 (W )) X ′b∗ (W )

]
=E [b∗ (W )]

the second equality follows from the fact that E
[
(X − e0 (W )) X ′

⏐⏐W] = v0 (W )).
Therefore (19) remains mean zero even if the nuisance functions h0 (W ) = (a0 (W ) , b0 (W )) are replaced by arbitrary

functions of W :

E
[
ψeff
β (Z, β0, g0 (W ) , h∗ (W ))

]
= 0. (20)

One special choice of h∗(W ) is the zero vector. This choice directly recovers the representation of β0 derived earlier
(Eq. (7)). In moment condition form

E
[
v0 (W )−1 (X − e0 (W )) Y − β0

]
= 0.

Next consider replacing g0 (W ) = (e0 (W ) , v0 (W )) in (19) with the incorrect conditional mean and variance functions
g∗ (W ) = (e∗ (W ) , v∗ (W )). Use the notation U0 =

(
Y − a0 (W )− X ′b0 (W )

)
to emphasize that U0 is the prediction error

associated with the mean squared error minimizing conditional linear prediction of Y given X conditional on W . By
Lemma 1 E [U0|W ] = 0 and E [XU0|W ] = 0. Therefore

E
[
ψeff
β (Z, β0, g∗ (W ) , h0 (W ))

]
=E

[
v∗ (W )−1 (X − e∗ (W ))

(
Y − a0 (W )− X ′b0 (W )

)]
+ E [(b0 (W )− β0)]

=E
[
v∗ (W )−1 E [XU0|W ]

]
− E

[
v∗ (W )−1 e∗ (W )E [U0|W ]

]
=0.

Hence (19) also remains mean zero even if the nuisance functions g0 (W ) = (e0 (W ) , v0 (W )) are replaced by arbitrary
functions of W .

Moment (19) has the so-called doubly robust property of Scharfstein et al. (1999) (cf., Ruud, 1986). It is mean zero
as long as one of the two nuisance functions, g (W ) or h (W ), coincides with its population one. We exploit this property
when constructing our estimator in the next section.

3. Estimation

In this section we present a locally semiparametrically efficient estimator for β0. In Appendix B, we discuss the
estimator proposed by Wooldridge (2004). A textbook presentation of this estimator is available in Chapter 21.6.3
of Wooldridge (2010). Wooldridge’s estimator, in part, motivates the efficient estimator proposed in this paper.

For the purposes of estimation we impose a parametric restriction on the conditional distribution of X given W.
Since the distribution of X given W is ancillary for β0, this parametric restriction does not change the semiparametric
efficiency bound (cf., Corollary 1). We call, borrowing nomenclature from related settings (e.g., Hirano and Imbens, 2004),
the resulting model for X the generalized propensity score.
122



B.S. Graham and C.C. de Xavier Pinto Journal of Econometrics 226 (2022) 115–138

A

w

M
r
b
o
I

w

ssumption 5 (Generalized Propensity Score). f (x|w;φ) is a parametric family of densities indexed by φ ∈ Φ ⊂ RL with
(i) f0 (x|w) = f(x|w;φ0) at some unique φ0 ∈ int (Φ), (ii) a maximum likelihood estimate (MLE) of φ0 equal to

φ̂ = argmax
φ∈Φ

N∑
i=1

ln f (Xi|Wi;φ)

with a score vectors of Sφ (X |W ;φ) = ∇φ f (X |W ;φ) /f (X |W ;φ), (iii) φ̂
p

→ φ0 with E
[
SiS′

i

]
non-singular and the

asymptotically linear representation

√
N
(
φ̂ − φ0

)
= E

[
SiS′

i

]−1 1
√
N

N∑
i=1

Si + op (1) (21)

here Si = Sφ (Xi|Wi;φ0).

Assumption 5 corresponds to a parametric model for the propensity score when X is a binary treatment indicator.
ore generally Assumption 5 requires the researcher to model the distribution of the policy given controls. Consider a

esearcher interested in the relationship between regular school attendance and student achievement. In this case Y could
e a measure of end-of-school-year achievement, X number of school days absent, and W a vector of joint determinants
f achievement and attendance (e.g., family background measures, prior achievement, pre-existing health conditions etc.).
n this case the researcher might assume that the distribution of X given W is Poisson with

E [X |W ] = exp
(
k (W )′ φ0

)
, V (X |W ) = exp

(
k (W )′ φ0

)
,

here k (W ) is a known L × 1 vector of functions of W . Estimation of φ0, and hence e (W ;φ0) and v (W ;φ0), is by
maximum likelihood. In most cases the conditional distribution of X given W can be conveniently modeled by, depending
on the nature of X , the appropriate generalized linear model (GLM). When X is multivariate, the outcome of censoring, or
has mixed discrete/continuous components, then specifying f (x|w;φ) may involve considerable work. For complicated
likelihoods e

(
W ; φ̂

)
and v

(
W ; φ̂

)
may need to be approximated numerically or by simulation.

A locally efficient, doubly robust estimator

Our estimator for β0 requires a working parametric model for the CLP coefficients a0 (W ) and b0 (W ). Consistency
and asymptotic normality of our estimate, β̂ , will not depend on the correctness of this working model, but its limiting
variance will. A convenient working model is provided by Assumption 6.

Assumption 6 (CLP Coefficients). a0 (W ) = α0 + (W − µW )
′ γ0 and b0 (W ) = β0 +∆0 (W − µW ).

In practice these models for a0 (W ) and b0 (W ) can be made arbitrarily flexible since W can include a rich set of basis
functions (e.g., squares, cross-products etc.) in the underlying controls.

Under Assumption 6 we have that

E∗ [Y | X;W ] = α0 + (W − µW )
′ γ0 + X ′ (β0 +∆0 (W − µW ))

= α0 + (W − µW )
′ γ0 + ((W − µW ) � X)′ δ0 + X ′β0, (22)

where δ0 = vec (∆0).
Eq. (22) implies that, maintaining Assumption 6, one approach to estimating β0 would be to compute the least squares

fit of Yi onto a constant, Wi −µW , all interactions of Wi −µi and Xi, and Xi itself. For the special case where X is a binary
treatment indicator, this estimator is familiar to labor economists as a Oaxaca–Blinder average treatment effect (ATE)
estimator (e.g., Sloczynski, 2015).3 Consistency of this estimator hinges upon Assumption 6 accurately characterizing the
sampled population.

In our setting Assumption 6 plays a different role. Unlike in the Oaxaca–Blinder procedure, its validity is not required
for consistency, but if it does accurately described the sampled population our estimator will be highly efficient. These
benefits come at the cost of assuming that prior knowledge regarding the form of the generalized propensity score is
available (i.e., maintaining Assumption 5).

To describe our procedure we require some additional notation. Let λ =
(
α, γ ′, δ′

)′, R (µW ) =
(
1, (W − µW )

′ ,

((Wi − µW ) � Xi)
′
)′ and

Ui (µW , λ, β) =
(
Yi − R (µW )

′ λ− X ′

iβ
)
.

When R (µW ) is evaluated at the correct population mean of W , we often simply write R.

3 In this literature researchers typically center W around E [W | X = 1], not the unconditional mean µW = E [W ] as is done here. With this
alternative centering the coefficient on X will coincide with the average treatment effect on the treated (ATT).
i
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Algorithm 1 Locally Efficient and Doubly Robust Estimation Of β0

1. Compute the maximum likelihood estimate of φ0 and construct e
(
Wi, φ̂

)
and v

(
Wi, φ̂

)
for i = 1, . . . ,N;

2. Compute the sample mean µ̂W =
1
N

∑N
i=1 Wi and construct Ri

(
µ̂W

)
for i = 1, . . . ,N;

3. Compute the linear instrumental variables fit of Yi onto Ri
(
µ̂W

)
and Xi using v

(
Wi; φ̂

)−1 (
Xi − e

(
Wi; φ̂

))
as the

excluded instrument for Xi. The coefficient on Xi in this fit coincides with β̂ .

Our estimator is based upon the (L + J + 1 + J + JK + K )× 1 vector of moment conditions, m (Zi, θ), partitioned into
he three ordered sub-vectors:

m1(Xi,Wi, φ)
L×1

=Sφ (Xi|Wi;φ) (23)

m2(Wi, µW )
J×1

=Wi − µW (24)

m3(Zi, φ, µW , λ, β)
1+J+JK+K×1

=

(
Ri (µW )

v (W ;φ)−1 (X − e (W ;φ))

)
Ui (µW , λ, β) (25)

here θ =
(
φ,µW , λ

′, β
)′ with dim (θ) = L + J + 1 + J + JK + K .

Eqs. (23), (24) and (25) constitute a just-identified system. The corresponding method-of-moments estimate of β0 can
e computed in the three simple steps listed in Algorithm 1.
In many cases of interest Algorithm 1 is easily implemented using standard software. Standard errors may be

onstructed in the usual way for GMM estimators (e.g., Newey and McFadden, 1994; Wooldridge, 2010) or using a
ootstrap.
In step 3, if instead we let Xi serve as its own instrument, we get an ‘‘Oaxaca–Blinder’’ type estimator.
The next theorem summarizes the large sample properties of β̂ . In the statement of the Theorem,∆∗ denotes the limit-

ng pseudo-true value of ∆̂. If Assumption 6 additionally holds then ∆∗ = ∆0. We also define ϵ̃ = v (W )−1
0 (X − e0 (W )) ϵ

here ϵ =
{
a0 (W )+ X ′ (b0 (W )− β0)− R′λ∗

}
(with λ∗ denoting a pseudo-true parameter value). Finally we let Πϵ̃S =[

ϵ̃iS′
]
E
[
SS′
]−1 denote the coefficient matrix associated with the multivariate regression of ϵ̃ onto the score vector

ssociated with φ0 (the parameter indexing the generalized propensity score).

heorem 2 (Large Sample Distribution). Consider the semiparametric problem established by Definition 1 and Assumptions 1,
2, and 5. Let β̂ be the method of moments estimate of β0 based upon restrictions (23) to (25). Under regularity conditions (cf.,
Newey and McFadden, 1994, Theorem 3.4) β̂ is (i) asymptotically normal with a limiting distribution of

√
N
(
β̂ − β0

)
D

→ N
(
0,E [Ω0 (W )] +∆∗V (W )∆′

∗
+ E

[
(ϵ̃ −Πϵ̃SS) (ϵ̃ −Πϵ̃SS)′

])
, (26)

and (ii) locally efficient for β0 at Assumption 6 with
√
N
(
β̂ − β0

)
D

→ N
(
0, I(β0)−1) . (27)

roof. See Appendix A. □

Part (ii) of Theorem 2 follows easily from part (i). In the proof we show that ϵ equals the prediction error associated
ith the mean squared error minimizing linear prediction of a0 (W )+X ′ (b0 (W )− β0) given R (µW ). When Assumption 6

additional holds this prediction error will be identically equal to zero and the third term in the variance expressing
appearing in part (i) drops out. Similarly when Assumption 6 holds we have ∆∗V (W )∆′

∗
= V (b0 (W )). Together these

two observations give part (ii).
Our efficiency bound calculation, Theorem 1, gives the information bound for β0 without imposing the additional

auxiliary Assumption 6. This assumption imposes restrictions on the joint distribution of the data not implied by the
baseline model. If these restrictions are added to the prior used to calculate the efficiency bound, then it will generally
be possible to estimate β0 more precisely. Our estimator is not efficient with respect to this augmented model. Rather
it attains the bound provided by Theorem 1 if Assumption 6 ‘‘happens to be true’’ in the sampled population, but is not
part of the prior restriction used to calculate the bound. Newey (1990, p. 114) discusses the concept of local efficiency in
detail. In what follows we will, for brevity, say β̂ is locally efficient at Assumption 6.

Even if Assumption 6 does not hold precisely, our procedure will be ‘‘nearly’’ efficient when it is approximately true
(in which case variability in ϵ about zero is small). A caveat to this claim is that the third variance term in (26) may still
be large in this case if v w is nearly zero for enough values of w. This occurs when overlap is poor, or there exists a lack
0 ( )
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f variation in the policy variable for some subpopulations defined in terms of W = w. Graham et al. (2016) develop this
bservation more extensively for the special case where X is binary, but similar issues apply in the more general setting

considered here.
Our next result formalizes the above observation. It extends our local efficiency result to ‘‘near’’ global efficiency.

The basic argument mirrors that given by Chamberlain (1987, Proposition 2) for approximately efficient estimation of
conditional moment problems. Presenting this result requires defining a sequence of estimators based upon Algorithm 1.

Let L2 be the space of functions f : W → R with finite second moment E
[
f (W )2

]
< ∞. Under Assumptions 1 and 2

the set of feasible conditional linear predictor coefficients lies within this space such that a : W → R1 and b : W → RK

with E
[
a (W )2

]
< ∞ and E

[
∥b (W )∥2] < ∞. Let

{
kj (W )

}∞

j=1 be a sequence of linearly independent functions of the
control variables, each with finite variance. Similar to Chamberlain (1987) we call this sequence complete if, (i) for any
ζ > 0 and (ii) any feasible conditional linear predictor coefficients a (W ) and b (W ) in L2, there are the real numbers
α, γ1, . . . , γJ and δk1, . . . , δkJ for k = 1, . . . , K such that

E
[δ(J) (W )2] < ζ 2, (28)

with δ(J) (W ) defined as

δ(J) (W ) =

⎛⎜⎜⎜⎜⎝
a (W )− α −

∑J
j=1

(
kj (W )− µj

)
γj

b1 (W )− β01 −
∑J

j=1

(
kj (W )− µj

)
δ1j

...

bK (W )− β0K −
∑J

j=1

(
kj (W )− µj

)
δKj

⎞⎟⎟⎟⎟⎠ . (29)

Let k(J) (W ) be the J × 1 vector of functions of W with jth element kj (W ). We can construct a sequence of estimators,
indexed by J , based upon Algorithm 1 with k(J) (W ) replacing W . To do this let µ(J) = E

[
k(J) (W )

]
and additionally define

R(J) =

(
1,
(
k(J) (W )− µ(J)

)′
,
((
k(J) (W )− µ(J)

)
⊗ X

)′)′

.

We can then estimate β0 by Algorithm 1 with k(J) (W ), µ(J) and R(J) respectively replacing W , µW , and R (µW ).
Consider the asymptotic precision matrix of this method of moments estimator; from Theorem 2 we get

I(J) (β0)
−1

=E [Ω0 (W )] +∆(J)
∗
V
(
k(J) (W )

) (
∆(J)

∗

)′
+ E

[(
ϵ̃(J) −Π

(J)
ϵ̃S S

)(
ϵ̃(J) −Π

(J)
ϵ̃S S

)′
]
.

with I(J) (β0)
−1

≥ I (β0)
−1 (here ‘‘A ≥ B’’ denotes ‘‘A−B is positive semi-definite’’). Recall that I (β0) is the semiparametric

efficiency bound given in Theorem 1. Let β̂(J) denote the estimate of β0 based upon k(J) (W ).

Proposition 3 (Near Efficiency). If, maintaining the Assumptions of part (i) of Theorem 2,
{
β̂(J)

}
is based upon a linearly

independent, complete sequence
{
kj (W )

}∞

j=1, then, for X × W a compact subset of RK+dim(W ),

lim
J→∞

I(J) (β0)
−1

= I (β0)
−1 .

Proof. See Appendix A. □

The compact support assumption invoked in the statement of the theorem is used in the proof, but does not appear
to be essential.

Proposition 3 leaves unanswered important practical questions, such as how quickly J should increase with N . More
generally the question of exactly how to choose the elements of k(J) (W ) in order to achieve good precision in practice
remains unanswered. However we expect that many insights from related settings could be applied here (e.g., Belloni
et al., 2014).

We conclude this section by demonstrating double robustness in the sense of Scharfstein et al. (1999). If the
specification of the generalized propensity score is not correct (i.e., Assumption 5 does not hold), but Assumption 6 is true,
then our estimator remains consistent for β0. Recall that Assumption 6 was initially invoked to ensure local efficiency of
our procedure. It turns out that modeling the form of the conditional linear predictor coefficients has the added benefit
of ensuring that our estimator remains consistent even if our generalized propensity score model is incorrect. Double
robustness results are familiar from the literature on missing data and program evaluation (e.g., Scharfstein et al., 1999;
Cattaneo, 2010; Graham, 2011). In these settings X is binary or a vector of mutually-exclusive treatment indicators. Double
robustness in our more general setting is perhaps unsurprising, but nevertheless a new result.

To understand this result observe that step 3 of Algorithm 1 corresponds to solving the sample analog of

E
[(

R (µW )
−1

)
U (µW , λ0, β0)

]
= 0
v (W ;φ∗) (X − e (W ;φ∗))
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or λ0 and β0. Here we use the notation φ∗ to denote that our generalized propensity score model may be miss-specified.
If Assumption 6 holds in the population, then U0 = Ui (µW , λ0, β0) is a conditional linear predictor (CLP) error

nd Lemma 1 applies. Recall that R (µW ) =
(
1, (W − µW )

′ , ((Wi − µW ) � Xi)
′
)′; by Lemma 1 U0 is uncorrelated with

all components of this vector. Likewise, because U0 is mean independent of W and conditionally uncorrelated with
X , we also have that E

[
v (W ;φ∗)

−1 (X − e (W ;φ∗))U
]
is mean zero as well. Hence step 3 of Algorithm 1 involves

the computation of a correctly specified method-of-moments estimator under Assumption 6; irrespective of whether
Assumption 5 additionally holds. Double robustness follows, more or less, directly.

The above discussion also clarifies why, as is sometimes true in practice, sampling variability in our estimator can
theoretically be lower than the semiparametric variance bound in Theorem 1 when the generalized propensity score is
misspecified, but the form of the CLP coefficients are not. First, recall that the variance bound is computed without making
any a priori assumptions about the form of the CLP coefficients. It turns out that in our setting such assumptions generally
increase the precision with which β0 may be estimated. When we invoke the double robustness property of our procedure
to ensure consistency we are in a situation where the veracity of Assumption 6 is central. Whereas is the setting covered
by Theorem 2, Assumption 6 ‘‘may happen to be true’’, but need not be.

It is instructive to compare our estimator with the ‘‘Oaxaca–Blinder-type’’ one described earlier. The Oaxaca–Blinder
procedure necessarily maintains Assumption 6. Since this restriction is part of the prior, it would not be surprising to
find that, under correct specification, that the Oaxaca–Blinder estimator is more efficient than ours. For the purposes of
developing this point, additionally assume that U0 is homoscedastic in X and W (but that this is not part of the prior),
then – maintaining Assumption 6 – replacing v (W ;φ∗)

−1 (X − e (W ;φ∗)) with X in the above moment would be natural.
This replacement leads the researcher to the Oaxaca–Blinder estimator (which will also be efficient in this case). Hence,
when Assumption 6 does hold in the sampled population, our procedure will be less efficient that the Oaxaca–Blinder
one (at least under homoscedasticity of U0). Of course, when Assumption 6 does not characterize the sampled population,
our procedure remains consistent, while the Oaxaca–Blinder one does not.

Theorem 3 (Double Robustness). Under Assumptions 1 and 2 , β̂
p

→ β0 if either Assumptions 5 or 6 holds.

The proof is straightforward and omitted (see Graham et al. (2012) and Graham et al. (2016) for proofs of related
results). As a practical matter using the standard method-of-moments sandwich variance–covariance matrix estimator
associated with the moment problem defined by (23)–(25) will support asymptotically valid inference under the
conditions of both Theorems 2 and 3.

4. Examples and special cases

In this section we demonstrate that our semiparametric regression model encompasses several other well-known
models.

Example 1: Binary treatment effect

Following the program evaluation literature let Y0 denote the potential outcome under control and Y1 the potential
outcome under active treatment. For each sampled unit we observe either Y0 or Y1 but not both. The observed outcome,
Y , therefore equals

Y = XY1 + (1 − X)Y0

where X equals 1 if the unit is treated and zero otherwise. Rewriting yields a random coefficients model of

Y = A + BX

with A = Y0 and B = Y1 − Y0. The average treatment effect (ATE) equals

β0 = E[Y1 − Y0] = E[B].

Rosenbaum and Rubin (1983) show that the ATE is identified when (Y0, Y1)⊥X |W (unconfoundedness) and 0 <

Pr (X = 1|W = w) < 1 for all w ∈ W (overlap).
When X is binary our Assumption 3 implies unconfoundedness. Assumption 3 implies that X is conditionally

uncorrelated with the two potential outcomes. When X is binary this also corresponds to mean and full conditional
independence. Next observe that e0(W ) = Pr (X = 1|W = w) and v0(W ) = e0(W ) [1 − e0(W )]. Hence our Assumption 2
implies that 0 < κ ≤ e0 (W ) ≤ 1 − κ < 1 or so called strong overlap.

Now consider Algorithm 1. When X is binary we have that

v

(
W , φ̂

)−1 (
X − e

(
W , φ̂

))
=

X

e
(
W , φ̂

) −
1 − X

1 − e
(
W , φ̂

) .
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ur ATE estimate is the coefficient on X associated with the linear instrumental variables fit of Y onto a constant, (W−µ̂W ),
W − µ̂W ) ·X , and X where X

e
(
W ,φ̂

) −
1−X

1−e
(
W ,φ̂

) serves as an instrument for X . This estimator is similar to, but distinct from,

the weighted least squares (WLS) one introduced by Hirano and Imbens (2001).
Wooldridge (2004) shows, for X binary, that Eq. (7) coincides with

E
[
v0 (W )−1 (X − e0 (W )) Y

]
= E

[
XY

e0 (W )
−

(1 − X) Y
1 − e0 (W )

]
,

which is the familiar inverse probability weighting (IPW) representation of the average treatment effect (ATE) in, for
example, Hirano et al. (2003).

The general form of the efficient influence function given in Theorem 1 corresponds to the specialized one for the
ATE when X is binary derived by, for example, Hahn (1998) and Hirano et al. (2003). Hence our general procedure,
as summarized by Algorithm 1, provides a locally efficient and double robust estimator of the ATE. To the best of
our knowledge, our proposed estimator is a new one, even in the special case where it identifies the ATE of a binary
treatment. Bang and Robins (2005) and Tsiatis (2006) provide introductions to double robust causal inference.

Example 2: Multiple treatment effects

Following Imbens (2000), Wooldridge (2004), and Cattaneo (2010) consider finite collection of mutually exclusive
treatments indexed by k ∈ {0, 1, 2, . . . , K } with K ∈ N. Associated with these treatments are the K+1 potential outcomes,
Y (0), Y (1), . . . , Y (K ). The observed outcome is

Y = Y (0) +

K∑
k=1

Xk {Y (k) − Y (0)}

where Xk is a binary random variable that equals 1 if treatment k = 0, . . . , K is assigned to the unit and zero otherwise.
In this case, we work with the following random coefficient model:

Y = A + X ′B

where X = (X1, . . . , XK )
′ is a K × 1 vector of treatment indicators and B a corresponding vector of individual treatment

effects.
In this setup X is multinomial with a conditional mean of

e0 (W ) =

⎛⎜⎝Pr (X1 = 1|W )
...

Pr (XK = 1|W )

⎞⎟⎠
and an inverse conditional variance of (cf., Henderson and Searle, 1981)

v0 (W )−1
=diag

{
1

Pr (X1 = 1|W )
, . . . ,

1
Pr (XK = 1|W )

}
+

1

1 −
∑K

k=1 Pr (XK = 1|W )
ιK ι

′

K .

A little bit of tedious algebra then gives

β0 = E
[
v0 (W )−1 (X − e0 (W )) Y

]
= E

⎡⎢⎢⎣
X1Y

Pr( X1=1|W ) −
X0Y

Pr( X0=1|W )
...

XK Y
Pr( XK=1|W ) −

X0Y
Pr( X0=1|W )

⎤⎥⎥⎦ ,
hich corresponds to the IPW representation of the ATEs

β0 =

⎛⎜⎝E [Y (1)− Y (0)]
...

E [Y (K )− Y (0)]

⎞⎟⎠ ,
n the multiple treatment setting.

As in the case where X is binary, the general form of the efficient influence function given in Theorem 1 corresponds to
he specialized one derived by Cattaneo (2010). Hence our general procedure also provides a locally efficient and doubly
obust estimate of ATEs in the multiple, mutually exclusive, treatments setting.
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xample 3: Partially linear model

Chamberlain (1986, 1992) and Robinson (1988) studied the semiparametric partially linear regression model (PLM)

Y = X ′β0 + h0(W ) + U

ith E[U |W , X] = 0. This model can be represented by the random coefficient model

Y = A + X ′B

here E[A|W , X] = a0 (W ) = h0(W ) and E[B|X,W ] = b0 (W ) = β0. These assumptions are stronger than those implied
by Assumption 3.

To fit this into our framework we replace Assumption 6 with a working CLP model of

a0 (W ) = h0 (W ) = α0 + (W − µW )
′ λ0, b0 (W ) = β0.

This implies a constant additive treatment effect structure.
Estimation follows Algorithm 1. First compute the MLE of φ0. Second compute the sample means µ̂W =

1
N

∑N
i=1 Wi.

inally compute the linear instrumental variables fit of Y onto a constant,
(
W − µ̂W

)
and X , using v

(
W , φ̂

)−1(
X − e

(
W , φ̂

))
as an instrument for X . Because of the constant additive treatment effect structure of the PLM we exclude

the interactions
(
W − µ̂W

)
⊗ X from the IV fit computed in the third step.

It is important to recognize that although our procedure invokes the working assumption that the treatment effect is
constant in W (i.e., b0 (w) = β0 for all w ∈ W), this assumption is not required for consistency as long as our generalized
propensity score model is correct. Put differently although our procedure incorporates the PLM structure, this structure
is not part of the maintained prior (albeit the form of the generalized propensity score is part of the prior).

If b0 (w) = β0 for all w ∈ W and U is conditionally mean zero given both W and X (and also has a constant variance),
but these are not part of the prior restriction used to calculate the bound, then (18) evaluates to

I(β0)−1
= σ 2E

[
v0(W )−1] .

The modified PLM estimator described above, and based on our Algorithm 1, will attain this bound when the true model
is a partially linear one.

Chamberlain (1992) gives a bound for β0 – where the partially linear regression structure is part of the prior restriction
(but the homoscedasticity assumption is not) – of

Iplm(β0)−1
= σ 2E [v0(W )]−1 .

The difference I(β0)−1
−Iplm(β0)−1 is positive semi-definite. This follows directly from, for example, the Theorem in Groves

and Rothenberg (1969) on the expectations of inverse matrices. Hence although our approach to estimation remains
consistent for β0 when the true regression function takes a partially linear form, it will generally be less efficient than
methods which exploit this structure at the outset (e.g., Robinson, 1988; Robins et al., 1992).

5. Finite sample properties

In order to assess the approximation accuracy of Theorems 2 and 3 in finite samples we conducted a small simulation
experiment, the results of which we report here. We considered four designs. The outcome was generated according to

Y = a0 (W )+ b0 (W ) X + U

with W and U independent standard normal random variables and a0 (W ) and b0 (W ) either linear (designs 1 and 2) or
quadratic (designs 3 and 4) in W . The conditional distribution of X given W was specified as Poisson with parameter
exp

(
k (W )′ φ

)
and k (W ) = (1,W )′ in designs 1 and 3 and k (W ) =

(
1,W ,W 2

)′ in designs 2 and 4. Complete details on
the data generating process are given in Table 1.

We evaluate the performance of three estimators. First we consider a simple ‘‘Oaxaca–Blinder’’ type estimator.
Specifically we estimate β0 by the coefficient on X in the least squares fit of Y onto a constant, W − µ̂W ,

(
W − µ̂W

)
× X

and X . As in Kline (2014) we appropriately account for the effect of estimating µW when constructing standard errors
and confidence intervals. This estimator is consistent for the true average partial effect in both designs 1 and 2. It is also,
since U is Gaussian and homoscedastic, efficient in these two designs. Efficiency is in the semiparametric model which,
in addition to Assumptions 1 and 2, maintains Assumption 6. The variance of the Oaxaca–Blinder estimates therefore lies
(weakly) below the bound given by Theorem 1 in these two designs. In designs 3 and 4, where a0 (W ) and b0 (W ) are
quadratic in W , the ‘‘Oaxaca–Blinder’’ estimator is inconsistent.

The second estimator is the generalized inverse probability weighting (GIPW) one due to Wooldridge (2004, 2010).
Our implementation tracks our analysis of Wooldridge’s estimator in Appendix B. For estimation we correctly assume
that the conditional distribution of X given W is Poisson, but set the parameter to exp

(
k W ′ φ

)
with k W = 1,W ′.
( ) ( ) ( )

128



B.S. Graham and C.C. de Xavier Pinto Journal of Econometrics 226 (2022) 115–138

T

Table 1
Monte Carlo designs.
Designs 1 2 3 4

α0 1 1 1.5 1.5
γ1 1 1 1 1
γ2 0 0 0.5 0.5
β0 2 2 2.5 2.5
δ1 1.22 1.26 1 1.05
δ2 0 0 0.5 0.5
φ0 0.1 0.1 0.1 0.1
φ1 0.5 0.5 0.5 0.5
φ2 0 0.1 0 0.1

Notes: We specified a0 (w) = α0 +γ1 (W − E [W ])+γ2
(
W 2

− E
[
W 2
])

and b0 (w) = β0 +

δ1 (W − E [W ])+ δ2
(
W 2

− E
[
W 2
])

analogous to the formulation given in Assumption 6.

Each of the four designs are calibrated such that
√

I (β0)
−1 /N = 0.05 when N = 1000.

his is correct in designs 1 and 3, but not 2 and 4. Hence the GIPW estimate of β0 is consistent in designs 1 and 3, but not
2 and 4. The GIPW is never efficient. Standard errors are constructed using the sample analog of the influence function
given in (54) of the Appendix.

Finally we consider the properties of our locally efficient, doubly robust estimator. Implementing this procedure
requires assumptions on both the CLP and the generalized propensity score. We make the same assumptions used to
implement the Oaxaca–Blinder and GIPW procedures. Consequently this last estimator is efficient – in the sense of
Theorem 1 – in design 1 and consistent in designs 1, 2 and 3. Like all the estimators it is inconsistent in design 4.
We construct standard errors using the (sample analog) of the influence function given in Theorem 2; consequently our
intervals are conservative in design 2 (where our propensity score model is misspecified).4

Each of the four designs are calibrated such that
√
I (β0)

−1 /N = 0.05 (0.025) when N = 1000 (4000). In an asymptotic
sense inference on β0 is equally hard across all the designs considered. We focus on the N = 1000 experiments in our
discussion (the quality of the asymptotic approximations predictably improve in the larger sample).

Results from the four designs are reported in Table 2. As expected our DR estimator is median unbiased across Designs
1, 2 and 3. In contrast the Oaxaca–Blinder estimator only performs acceptably in designs 1 and 2, and the GIPW estimator
in design 1 and 3. In designs 1 and 2 the variability of the DR estimator is nearly as small as that of the Oaxaca–Blinder
one. Neither the DR, nor the GIPW, estimators are expected to be efficient in design 3 but, interestingly, GIPW is more
efficient than DR in this case. In design 1, where the DR estimator is locally efficient, its standard deviation is substantially
smaller than that of the GIPW estimator (as expected).

Overall the simulation results track our theoretical predictions remarkably closely. Of course exploring the performance
of these estimators in the context of real world empirical applications and other, more realistic, simulation designs would
be of interest.

6. Conclusion

We have introduced a locally efficient, doubly robust, semiparametric method of estimating averages of conditional
linear predictor coefficients. Our estimand, and semiparametric efficiency bound, specialize to familiar counterparts
found in the program evaluation literature (e.g. Hahn, 1998; Cattaneo, 2010). While encompassing well-known program
evaluation settings, our framework allows for (semiparametric) covariate adjustment in many other settings as well
(including ones with few extant alternative methods of such adjustment).

Researchers interested in estimating the average treatment effect (ATE) associated with a binary treatment can apply
our methods. While we believe the precise form of our procedure is new even to this familiar setting, it is a variant
of the class of augmented inverse probability weighting (AIPW) estimators introduced by Robins et al. (1994) in the
missing data context over 20 years ago. The real attraction of Algorithm 1, and the corresponding Theorems 2 and 3
(as well as Proposition 3), is that they apply to models beyond the ‘‘classic’’ program evaluation one of Rosenbaum and
Rubin (1983). Multiple, mutually exclusive treatments, as in Imbens (2000) and Cattaneo (2010) are easily handled as a
special case. Similarly, maintaining a linear, but heterogeneous, potential response function structure, Algorithm 1 recovers
average partial effects (APE) for continuous treatments, multiple non-exclusive treatments, mixtures of binary, discrete
and continuous treatments and so on. A weighted average derivative interpretation of our estimand is also available for
settings where the linear potential response function structure may not hold (Proposition 2).

We also wish to emphasize that averages of conditional linear predictor coefficients represent a natural, but substantial,
generalization of linear predictor coefficients as estimated by the method of least squares. Hence Algorithm 1 also provides
a method of flexible covariate adjustment that may be of independent interest even in settings where formal causal
inference is not warranted; similar to how least squares is sometimes used for descriptive purposes.

4 We use Python 3.6 to conduct our experiments. Replication code is available in the supplemental materials.
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imulation results.

Panel A, N = 1000 Panel B, N = 4000

Bias Std. Dev. Std. Err. Coverage Bias Std. Dev. Std. Err. Coverage

Design 1
Oaxaca-Blinder −0.0003 0.0500 0.0496 0.9480 0.0006 0.0252 0.0248 0.9438
GIPW −0.0008 0.0853 0.0809 0.9438 0.0016 0.0429 0.0419 0.9494
DR 0.0001 0.0507 0.0499 0.9450 0.0009 0.0254 0.0250 0.9448
Design 2
Oaxaca-Blinder 0.0009 0.0504 0.0497 0.9442 0.0000 0.0251 0.0248 0.9456
GIPW −0.2597 0.1331 0.1198 0.4634 −0.2613 0.0710 0.0666 0.0258
DR 0.0014 0.0518 0.0561 0.9620 −0.0001 0.0258 0.0283 0.9694
Design 3
Oaxaca-Blinder −0.3268 0.0993 0.0899 0.0772 −0.3319 0.0531 0.0481 0.0002
GIPW −0.0018 0.0830 0.0794 0.9436 −0.0005 0.0428 0.0413 0.9452
DR −0.0113 0.1099 0.0981 0.9276 −0.0036 0.0570 0.0529 0.9368
Design 4
Oaxaca-Blinder −0.2010 0.1571 0.1087 0.5148 −0.2391 0.1255 0.0674 0.0168
GIPW 0.2717 0.1897 0.1216 0.4006 0.3052 0.1335 0.0748 0.0034
DR 0.4123 0.2035 0.1687 0.3076 0.4362 0.1058 0.1013 0.0986√

I (β0)
−1 /N 0.05 0.0250

Notes: The bias column reports median bias across all B = 5000 simulations. The Std. Dev. column reports the standard deviation of the point
stimates across these simulations, Std. Err. the median estimated standard error, and Coverage the actual coverage of a nominal 95 percent
onfidence interval (constructed using the estimated point estimate and standard error in the normal way). The standard error associated with a
onte Carlo coverage estimate is

√
α (1 − α) /B. With B = 5000 simulations and α = 0.05, this results in a standard error of approximately 0.003

or a 95 percent confidence interval of [0.944, 0.956].

Our work leaves several questions unanswered. First, although the flexible parametric modeling embodied in
Assumptions 5 and 6 closely mirrors empirical practice, it would be useful to development methods that leave the
generalized propensity score and CLP coefficients non-parametric. It seems likely that results from the binary and multiple
treatments case could be extended to apply here (e.g., Hirano et al., 2003; Cattaneo, 2010; Belloni et al., 2014).

In other work we have shown that first order equivalent estimators may have appreciably different higher order
properties in program evaluation settings (Graham et al., 2012). We expect that other locally efficient, doubly robust
approaches to estimation for the class of problems considered in this paper are feasible. These approaches may exhibit
superior or inferior higher order bias.

Third, maintaining the correlated random coefficient structure, different notions of conditional exogeneity will imply
different semiparametric efficiency bounds (when linearity is restrictive). Our decision to work with a weak notion of
exogeneity maintains a connection with conditional linear predictors. If a researcher was comfortable with the correlated
random coefficient structure, then it would generally be possible to construct more efficient estimates of β0 = E [B] if
she was willing to assume, for example, that

(
A, B′

)′
⊥ X

⏐⏐⏐W = w for all w ∈ W. Such estimators would likely be quite
complicated and may have poor finite sample properties.

Appendix A. Proofs

This appendix contains proofs of the results contained in the main paper. All notation is as defined in the main text
unless explicitly noted otherwise. Equation numbering continues in sequence with that established in the main text.

Proof of Theorem 1 (Semiparametric Efficiency Bound). In calculating the efficiency bound for β0 in the semiparametric
regression model defined by Definition 1 and Assumptions 1 and 2 of the main text, we follow the approach outlined
by Newey (1990, Section 3). First, we characterize the model’s tangent space. Second, we demonstrate pathwise
differentiability of β0. The efficient influence function for β0 equals the projection of this derivative onto the tangent space.
In the present case the pathwise derivative lies in the tangent space and hence coincides with the required projection.
The result then follows from an application of Theorem 3.1 in Newey (1990).

Step 1: Characterization of the model tangent space:
The joint density function for z = (w, x, y) is given by

f0 (w, x, y) = f0 (x, y|w) f0 (w) ,

where f0 (x, y|w) denotes the conditional density/mass of (X = x, Y = y) given W = w and f0 (w) is the marginal
density/mass of W = w.

Consider a regular parametric submodel indexed by η with f (w, x, y; η) = f0 (w, x, y) at η = η0. The submodel joint
density equals

|
f (w, x, y; η) = f (x, y w; η) f (w; η) ,
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ith a corresponding score vector of

sη (w, x, y; η) = sη (x, y|w; η)+ tη (w; η) (30)

here

sη (w, x, y; η) = ∇ηf (w, x, y; η) , sη (x, y|w; η) = ∇ηf (x, y|w; η) , tη (w; η) = ∇ηf (w; η) .

By the usual (conditional) mean zero property of scores we have that

E
[
sη (X, Y |W )

⏐⏐W] = E
[
tη (W )

]
= 0, (31)

where the suppression of η in a function indicates that it is evaluated at its population value (e.g., tη (w) = tη (w; η0)).
The model tangent set is the closed linear span of the set of all such scores. From (30) and (31) this set evidently equals

T = {s (x, y|w)+ t (w)}

where s (x, y|w) and t (w) satisfy the (conditional) moment restrictions

E [ s (X, Y |W )|W ] = E [t (W )] = 0,

and also have finite variance.

Step 2: Demonstration of pathwise differentiability:
Under the parametric submodel, β (η) is identified by

β (η) =

∫
b (w; η) f (w; η) dw, (32)

where b (w; η) satisfies the conditional moment restriction∫ ∫ (
1
x

) (
y − a (w; η)− x′b (w; η)

)
f (x, y|w; η) dxdy = 0. (33)

Differentiating (32) under the integral and evaluating at η = η0 gives

∂β (η0)

∂η′
= E

[
∂b (W ; η0)

∂η′

]
+ E

[
b (W ; η0) tη (W ; η0)

]
. (34)

We can derive a close-form expression for ∂b(w;η0)
∂η′ in (34) by differentiating (33) with respect to η (and evaluating at

= η0):

−

∫ ∫ (
1
x

)
∂a (w; η0)

∂η′
f (x, y|w; η0) dxdy −

∫ ∫ (
x′

xx′

)
∂b (w; η0)

∂η′
f (x, y|w; η0) dxdy

+

∫ ∫ (
1
x

) (
y − a (w; η)− x′b (w; η0)

)
sη (x, y|w; η0) f (x, y|w; η0) dxdy = 0

Using the matrix inverse

E
[
1 X ′

X XX ′

⏐⏐⏐⏐W = w

]−1

=

(
1 + e0 (w)′ v0 (w)−1 e0 (w)− e0 (w)′ v0 (w)−1

−v0 (w)
−1 e0 (w) v0 (w)

−1

)
we solve to get(

∂a(w;η0)
∂η′

∂b(w;η0)
∂η′

)
=

(
1 + e0 (w)′ v0 (w)−1 e0 (w)− e0 (w)′ v0 (w)−1

−v0 (w)
−1 e0 (w) v0 (w)

−1

)
×E

[(
Y − a (W ; η0)− X ′b (W ; η0)

X
(
Y − a (W ; η0)− X ′b (W ; η0)

)) sη (X, Y |W ; η0)

⏐⏐⏐⏐W = w

]
.

Evaluating the second row of this expression gives

∂b (w; η0)

∂η′
= E

[
v0 (W )−1 (X − e0 (W ))

(
Y − a0 (W )− X ′b0 (W )

)
sη (X, Y |W )

⏐⏐W = w
]
, (35)

which, after substituting into (34), yields

∂β (η0)

∂η′
= E

[
v0 (W )−1 (X − e0 (W ))

(
Y − a0 (W )− X ′b0 (W )

)
sη (X, Y |W )

]
+E

[
b W t W

]
. (36)
0 ( ) η ( )
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To demonstrate pathwise differentiability of β , we require F (W , X, Y ) such that

∂β (η0)

∂η′
= E

[
F (W , X, Y ) sη (W , X, Y )′

]
. (37)

Setting F (W , X, Y ) equal to ψeff
β (Z, β0, g0 (W ) , h0 (W )), as defined in (19) of the main text, we get E

[
F (W , X, Y ) sη

(W , X, Y )′
]
equal to (36) since, by Lemma 4.1 of (Wooldridge, 1999),

E
[
(X − e0 (W ))

(
Y − a0 (W )− X ′b0 (W )

)⏐⏐W] = 0

and iterated expectations (and the conditional mean zero property of the score sη (X, Y |W )) further implies that
E
[
(b0 (W )− β0) sη (X, Y |W )

]
= 0.

Step 3: Verification that the conjectured influence function equals the required projection:
Observe that ψeff

β (Z, β0, g (W ) , h (W )) lies in the model tangent space. Its first term is conditionally mean zero given
W and hence plays the role of s (X, Y |W ). Its second term is a mean zero function of W alone and hence plays the role
of t (W ). Since ψeff

β (Z, β0, g0 (W ) , h0 (W )) ∈ T , its projection onto T equals itself. Since equation (9) of Newey (1990, p.
106) is satisfied the result follows from his Theorem 3.1.

Proof of Theorem 2 (Large Sample Properties of β̂). Recall that λ =
(
α, γ ′, δ′

)′ and
R

(1+J+JK )×1
=
(
1, (W − µW )

′ , ((W − µW )⊗ X)′
)′
.

In what follows we let λ∗ denote value of λ which solves the just-identified population moments (23)–(25). If
Assumption 6 additionally holds in the sampled population, then we use λ0 to denote the population value of λ. In this
case λ0 correctly specifies the form of the CLP of Y given X conditional on W .

In the Supplemental Web Appendix we show, without maintaining Assumption 6, that

λ∗ =E
[
RR′
]−1 E

[
R
(
Y − X ′β0

)]
(38)

=E
[
RR′
]−1 E

[
R
(
a0 (W )+ X ′ (b0 (W )− β0)

)]
.

Eq. (38) implies that R′λ∗ is the mean squared error minimizing linear predictor of a0 (W ) + X ′ (b0 (W )− β0) given R.
This interpretation of λ∗ is all that is required for the first part of Theorem 2.

We will also use the notation

U0 =
(
Y − R′λ0 − X ′β0

)
and

U∗ =
(
Y − R′λ∗ − X ′β0

)
.

Note that under Assumption 6 U0 equals a conditional linear prediction error. However when Assumption 6 does not hold
an implication of (38) is that U∗ is still an unconditional linear predictor error.

We also use the shorthand e0 (W ) = e (W ;φ0) and v0 (W ) = v (W ;φ0) in order to simplify some of the expressions
presented below. Finally we use θ0 to denote both

(
φ′

0, µ
′

W , λ
′
∗
, β ′

0

)′ and (φ′

0, µ
′

W , λ
′

0, β
′

0

)′, with the relevant case made
clear by the context.

Next define the (1 + J + JK )× J and K × J matrices

B1
(1+J+JK )×J

= E
[
R
{
γ∗ +

(
IJ ⊗ X

)′
δ∗

}′
]

− E

⎡⎣ 0
0(

IJ ⊗ X
)
U∗

⎤⎦ (39)

B2
K×J

= E
[(
v0 (W )−1 (X − e0 (W ))

) {
γ∗ +

(
IJ ⊗ X

)′
δ∗

}′
]
. (40)

Using this notation we can write the (L + J + 1 + J + JK + K )× (L + J + 1 + J + JK + K ) Jacobian matrix of the moment
vector as

M = −

⎛⎜⎝
−H (φ0) 0 0 0

0 IJ 0 0
0 −B1 E

[
RR′
]

E
[
RX ′
]

E
[
v0 (W )−1 (X − e0 (W ))U∗S′

]
−B2 0 IK

⎞⎟⎠ ,

ith H (φ0) equal to the L × L expected Hessian matrix associated with the generalized propensity score log-likelihood.
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T
he inverse Jacobian is therefore

M−1
= −

⎛⎜⎜⎝
−H (φ0)

−1

0
−E

[
RR′
]−1 E

[
RX ′
]
E
[
v0 (W )−1 (X − e0 (W ))U∗S′

]
H (φ0)

−1

E
[
v0 (W )−1 (X − e0 (W ))U∗S′

]
H (φ0)

−1

0 0 0
IJ 0 0

E
[
RR′
]−1 (B1 − B2E

[
RX ′
])

E
[
RR′
]−1

−E
[
RR′
]−1 E

[
RX ′
]

B2 0 IK

⎞⎟⎟⎠ . (41)

Under Assumption 5 a key observation is that the expected value of (40) equals

E
[(
v0 (W )−1 (X − e0 (W ))

) {
γ∗ +

(
IJ ⊗ X

)′
δ∗

}′
]

= E
[(
v0 (W )−1 (X − e0 (W ))

)
γ ′

∗

]
+ E

[(
v0 (W )−1 (X − e0 (W ))

)
δ′

∗

(
IJ ⊗ X

)]
=0 + E

[(
v0 (W )−1 (X − e0 (W ))

)
×
(
X ′δ1∗ · · · X ′δJ∗

)]
=
(
δ1∗ · · · δJ∗

)
= ∆∗.

Using this last equality, as well as the fact that under Assumption 5 we have H (φ0) = −E
[
SS′
]
, implies that the last

K rows of −M−1 1
√
N

∑N
i=1 m (Zi, θ0)+ op (1) equal, after some manipulation,

√
N
(
β̂ − β0

)
=

1
√
N

N∑
i=1

{
v0 (Wi)

−1 (Xi − e0 (Wi))U∗i

− E
[
v0 (W )−1 (X − e0 (W ))U∗S′

]
E
[
SS′
]−1 Si

+∆∗ (Wi − µW )} + op (1) . (42)

Next observe that we may decompose U∗ as

U∗ =Y − R′λ∗ − X ′β0

=Y − a0 (W )− X ′b0 (W )
+
{
a0 (W )+ X ′ (b0 (W )− β0)− R′λ∗

}
=U0 + ϵ.

Since E [U∗W ] = 0 by the properties of linear predictors, E [U0|W ] = 0 by the properties of conditional linear predictors,
and U∗ = U0 + ϵ, we have that E [ϵW ] = 0. Defining ϵ̃ = v0 (W )−1 (X − e0 (W )) ϵ we can re-write (42) as

√
N
(
β̂ − β0

)
=

1
√
N

N∑
i=1

{
v0 (Wi)

−1 (Xi − e0 (Wi))U0i

+ (ϵ̃i −Πϵ̃SSi)+∆∗ (Wi − µW )} + op (1) (43)

where Πϵ̃S = E
[
ϵ̃iS′

]
E
[
SS′
]−1. This gives the first implication of the Theorem. The second implication follows from the

fact that ϵ = 0 and ∆∗V (W )∆′
∗

= V (b0 (W )) under Assumption 6.

Proof of Proposition 3 (Near Global Semiparametric Efficiency). Let A be an m×n matrix with ∥A∥F = Tr
(
A′A

)1/2 denoting
the Frobenius matrix norm, ∥A∥2 the spectral norm and recall that ∥A∥2 ≤ ∥A∥F . Let a be an n× 1 vector with Euclidean
norm ∥a∥ =

(
a′a
)1/2. We make use of several matrix and probability inequalities in what follows. These are drawn

from Hansen (2018, Appendices A & B) unless stated otherwise.

Let t be a non-zero column vector. The difference in the asymptotic variance of the estimate of the linear combination
t ′β0 based upon R(J) and a corresponding semiparametrically efficient estimate is

t ′I(J) (β0)
−1 t − t ′I (β0)

−1 t =t ′∆(J)
∗
V
(
k(J) (W )

) (
∆(J)

∗

)′
t − t ′V (b0 (W )) t

+ t ′E
[(
ϵ̃(J) −Π

(J)
ϵ̃S S

)(
ϵ̃(J) −Π

(J)
ϵ̃S S

)′
]
t

≥0. (44)
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W
z

U

C{

w

e seek to show that this variance difference is also bounded above by something that can be made arbitrarily close to
ero.
To start observe that, after some manipulation (see the Supplemental Web Appendix) we can show that

V
(
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

)
=∆(J)

∗
V
(
k(J) (W )

) (
∆(J)

∗

)′
− V (b0 (W ))

− 2E [(b0 (W )− β0)

×
{
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

}′
]

(45)

sing (45) we can rewrite t ′I(J) (β0)
−1 t − t ′I (β0)

−1 t as

t ′V
(
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

)
t

+ 2t ′E
[
(b0 (W )− β0)

{
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

}′
]
t

+ t ′E
[(
ϵ̃(J) −Π

(J)
ϵ̃S S

)(
ϵ̃(J) −Π

(J)
ϵ̃S S

)′
]
t. (46)

onsider the first term in (46). The Quadratic Inequality (QI), Expectation Inequality (EI), and completeness of the sequence
kj (W )

}∞

j=1 (see Eq. (28)) give

t ′V
(
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

)
t ≤ C1ζ

2, (47)

ith C1 a constant.
Next consider the second term in (46). Applying the Cauchy–Schwarz inequality to this term yields⏐⏐⏐t ′E [(b0 (W )− β0)

{
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

}′
]
t
⏐⏐⏐ ≤V

(
t ′b0 (W )

)1/2
× V

(
t ′ {b0 (W )

+∆(J)
∗

(
k(J) (W )− µ(J)

)
− β0

})1/2
Again invoking completeness of the sequence

{
kj (W )

}∞

j=1, and also boundedness of the variance of b0 (W ), we then get⏐⏐⏐t ′E [(b0 (W )− β0)
{
b0 (W )+∆(J)

∗

(
k(J) (W )− µ(J)

)
− β0

}′
]
t
⏐⏐⏐ ≤ C2ζ , (48)

with C2 a constant (which depends on V (b0 (W ))).
Finally consider the third term in (44). To analyze this term we start by writing the linear predictor approximation

error of
(
R(J)
)′
λ
(J)
∗ for a0 (W )+ X ′ (b0 (W )− β0) as

ϵ(J) =

{
a0 (W )+ X ′ (b0 (W )− β0)−

(
R(J)
)′
λ(J)

∗

}
=a (W )− α(J)

∗
−
(
k(J) (W )− µ(J)

)′
γ (J)

∗

+ X ′
(
b0 (W )− β0 −∆(J)

∗

(
k(J) (W )− µ(J)

))
=
(
1, X ′

)
δ(J) (W ) ,

with the final equality following from definition (29). The EI and the fact that, for a and b m×1 vectors
ab′


F = ∥a∥ ∥b∥,

then givesE[(ϵ̃(J) −Π
(J)
ϵ̃S S

)(
ϵ̃(J) −Π

(J)
ϵ̃S S

)′
] ≤ E

[ϵ̃(J) −Π
(J)
ϵ̃S S

2]
with

ϵ̃(J) = v0 (W )−1 (X − e0 (W ))
{(

1, X ′
)
δ(J) (W )

}
.

By the norm-reducing property of projection and Schwarz Matrix Inequality (SMI) we further get thatϵ̃(J) −Π
(J)
ϵ̃S S

 ≤
ϵ̃(J)

=
v0 (W )−1 (X − e0 (W ))

{(
1, X ′

)
δ(J) (W )

}
≤
v0 (W )−1 (X − e0 (W ))

{(
1, X ′

)} δ(J) (W ) .
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Algorithm 2 The Wooldridge (2004) Estimate of β0

1. Compute the maximum likelihood estimate of φ0 and construct e
(
Wi, φ̂

)
and v

(
Wi, φ̂

)
for i = 1, . . . ,N;

2. Compute linear instrumental variables fit of Y onto X (with no constant) using v
(
W ; φ̂

)−1 (
X − e

(
W ; φ̂

))
as the

instrument for X . The coefficient on X equals β̂ .

Applying the expectation operator, invoking Assumption 2, and using the compact support assumption for (W , X), finally
ives

E
[ϵ̃(J) −Π

(J)
ϵ̃S S

2] ≤E
[v0 (W )−1 (X − e0 (W ))

{(
1, X ′

)}2 δ(J) (W )2]
≤C3E

[δ(J) (W )2]
≤C3ζ

2 (49)

ith C3 = supw,x∈W,X
v0 (W )−1 (X − e0 (W ))

{(
1, X ′

)}2.
Applying the TI to (46) and using terms (47)–(49) then gives the bound

0 ≤ t ′I(J) (β0)
−1 t − t ′I (β0)

−1 t ≤ (C1 + C3) ζ
2
+ C2ζ . (50)

ince ζ is arbitrary the limit of the difference in (50) is zero.

ppendix B. The Wooldridge (2004) estimator

Wooldridge (2004) introduced a two-step estimator for β0. A textbook exposition appears in Wooldridge (2010, Chapter
21.6.3 ). His procedure is summarized in Algorithm 2.

Wooldridge (2004) does not characterize the asymptotic sampling properties of β̂W . In this section, we show that
Wooldridge’s estimator is not efficient under Assumptions 1, 2 and 5. Furthermore it requires the generalized propensity
score to be correctly specified. The structure of this inefficiency and lack of robustness, as well as the form of the efficient
influence function derived earlier, guides the construction of our new, locally efficient and doubly robust estimator.

The second step of Algorithm 2 corresponds to finding the β̂W which solves the sample moment

1
N

N∑
i=1

ρ

(
Zi, φ̂, β̂W

)
= 0, (51)

or ρ (Z, φ, β) = v (W ;φ)−1 (X − e (W ;φ))
(
Y − X ′β

)
. Here φ̂ corresponds to the MLE of φ0 computed in the first step of

he procedure. A mean value expansion of (51) in β̂W about β0 yields

β̂W = β0 +
1
N

N∑
i=1

ρ

(
Z, φ̂, β0

)
+ op(N−1/2).

earrangement of terms and a second mean value expansion in φ̂ about φ0 gives

√
N
(
β̂W − β0

)
=

1
√
N

N∑
i=1

ρ (Z, φ0, β0)

+

{
1
N

N∑
i=1

∂ρ
(
Z, φ̄, β0

)
∂φ

}
√
N
(
φ̂ − φ0

)
+ op (1) .

bserve that under Assumptions 1 and 2

E [ρ (Z, φ0, β0)|W = w] = E
[
v (W ;φ0)

−1 (X − e (W ;φ0))
(
Y − X ′β0

)⏐⏐W = w
]

= b0 (w)− β0

since E
[
v (W ;φ0)

−1 (X − e (W ;φ0)) X ′
⏐⏐W = w

]
= IK . In integral form:∫

ρ (z, φ0, β0) f0 (y|w, x) f (x|w;φ0) dxdy = b0 (w)− β0. (52)
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D

b

D

a

ifferentiating (52) through the integral with respect to φ gives:

E
[
∂ρ (Z, φ0, β0)

∂φ

⏐⏐⏐⏐W = w

]
= −E

[
ρ (Z, φ0, β0) S′

⏐⏐W = w
]
, (53)

which is a Generalized Information Matrix Equality (GIME) result (e.g., Newey, 1990, p. 104).
Using (21) and (53) we have

√
N
(
β̂W − β0

)
=

1
√
N

N∑
i=1

ρi

−E
[
ρS′
]
E
[
SS′
]−1 1

√
N

N∑
i=1

Si + op (1)

=
1

√
N

N∑
i=1

{
ρi − E

[
ρS′
]
E
[
SS′
]−1 Si

}
+ op (1) (54)

for ρi = ρ (Zi, φ0, β0).
Similar to the result of Wooldridge (2007) for the binary X case, this asymptotically linear representation of β̂W implies

that if practitioners ignore sampling error in φ̂, they can get conservative confidence intervals. In addition, this expression
shows that over-parameterizing the conditional distribution of X given W will not decrease the asymptotic precision β̂W.

We show next that β̂W is inefficient for β0 in the semiparametric model defined by Assumptions 1, 2 and 5.
This demonstration of inefficiency usefully provides insight into how to construct a more efficient estimator. We
begin by decomposing Wooldridge’s (2004) identifying moment into the efficient influence function and a remainder:
ρ (Z, φ0, β0) = ψeff

β (Z, β0, φ0, h0 (W ))+ r (W , X, β0, φ0, h0 (W )) with

r (W , X, β0, φ0, h0 (W )) =v (W ;φ0)
−1 (X − e (W ;φ0))

(
a0 (W )+ X ′ (b0 (W )− β0)

)
(55)

− (b0 (W )− β0)

Let r0 (W , X) = r (W , X, β0, φ0, h0 (W )). Note that E [ r0 (W , X)|W ] = 0. Note further that S is also conditionally mean
zero given W .

Now observe that for l = 1, . . . , dim (φ)

∂ψeff
β

∂φl
= −v (W ;φ0)

−1 ∂v (W ;φ0)

∂φl
v (W ;φ0)

−1 (X − e (W ;φ0))U

− v (W ;φ0)
−1 ∂e (W ;φ0)

∂φl
U,

and hence that

E

[
∂ψeff

β

∂φl

⏐⏐⏐⏐⏐W
]

= −v (W ;φ0)
−1 ∂v (W ;φ0)

∂φl
v (W ;φ0)

−1 E [ (X − e (W ;φ0))U |W ] (56)

−v (W ;φ0)
−1 ∂e (W ;φ0)

∂φl
E [U |W ]

= 0

y Lemma 1.
Next start with the fact that∫

ψeff
β f0 (y| x, w) f (x|w;φ0) f0 (w) = 0.

ifferentiating through the integral gives the equality∫
∂ψeff

β

∂φ′
f0 (y| x, w) f (x|w;φ0) f0 (w) = −

∫ {
ψeff
β S′

}
f0 (y| x, w) f (x|w;φ0) f0 (w)

nd hence that, using the decomposition of ρ (Z, φ0, β0) introduced above and Eq. (56),

E
[
ρS′
]

= E
[
ψeff
β S′

]
+ E

[
rS′
]

= E
[
rS′
]
.

Plugging this into our influence function we get

√
N
(
β̂W − β0

)
=

1
√
N

N∑
i=1

{
ρi − E

[
ρS′
]
E
[
SS′
]−1 Si

}
+ op (1)

=
1

√
N

N∑{
ψeff
β,i +

[
ri − E

[
rS′
]
E
[
SS′
]−1 Si

]}
+ op (1) ,
i=1
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nd hence an asymptotic distribution of
√
N
(
β̂W − β0

)
D

→ N
(
0, I (β0)

−1
+ E

[
(r −ΠrSS) (r −ΠrSS)′

])
(57)

with ΠrS = E
[
rS′
]
× E

[
SS′
]−1.

The form of the limit distribution (57) is similar to that of the familiar inverse probability weighting (IPW) estimator
for binary treatments (e.g., Graham et al., 2012, Proposition 3.1). In that context it is well-known that replacing a known
propensity score with an estimated one increases precision (Hirano et al., 2003; Hitomi et al., 2008; Graham, 2011). In
principle the degree of precision increase is increasing in the complexity/richness of the fitted propensity score model.
Expression (57) indicates that a similar phenomena operates in our setting. If the portion of the efficient influence function
that is omitted by the Wooldridge (2004) procedure is well-approximated by a linear combination of the scores used to
estimate the propensity score, then the β̂W will be precisely determined. In practice, instead of relying on a possibly
verfitted propensity score to yield efficient estimates, it is better to redesign the estimation procedure with efficiency in
ind at the outset.

ppendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.07.008.
his supplemental material includes proofs of the results not included in the main appendices as well as additional detailed
alculations for some proof steps.
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