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The attempt by social scientists to uncover causal relationships with linear regression meth-
ods is a century old enterprise.1 One hundred years later this enterprise remains as contro-
versial as it was at its outset (e.g., Freedman, 1997). Two key challenges arise. The first is
foundational. The second is technical, but by no means trivial. The second will be the focus
of this lecture, but we will nevertheless begin with a quick overview of the first.

When can association be used to infer causation?

Let Y be an outcome of interest, X a policy variable (which may be vector valued with
discrete and/or continuous elements), and W a vector of “control” variables or observed
“confounders”. Under random sampling of Z = (W ′, X ′, Y )′ the econometrician can eventu-
ally learn the proxy variable regression (PVR) function

E [Y |W = w,X = x] = q (w, x) (1)

at all points in the joint support of W and X.

From (1) the econometrician can then compute the contrast

∆ (x′, x;w) = q (x′, w)− q (x,w) (2)

for any (x,w) and (x′, w) pair in the joint support.

This contrast corresponds to the difference in average outcomes between two subpopulations.
These two subpopulations are identical in terms of W, but differ in terms of the “policies”
X to which they have been exposed.

1An early reference is George Udny Yule’s (1897) investigation into the causes of poverty (“pauperism”)
in England.
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Our first, foundational, question is when does ∆ (x′, x;w) also measure the average effect
(on the subpopulation with W = w) of intervening to change the policy from x to x′? The
proxy variable regression provides us with a measure of association; does this measure also
predict the effects of interventions?

Rubin (1977) provided conditions under which (2) has the desired causal interpretation for
the case where X is binary-valued (see also Barnow, Cain and Goldberger (1980) and the
references therein). The extension of his basic argument to the case where X is vector valued
with discrete and/or continuous elements is straightforward and sketched here. There are a
number of subtleties involved in the argument, which I ignore. Holland (1986) provides a
useful, if somewhat dated, reference.

I begin by positing the existence of an individual-specific potential response function

Y (x) = m (x, U) . (3)

The function Yi (x) gives individual i′s potential outcome to policy x. Individual i′s observed
outcome, in a slight abuse of notation, is

Yi = Yi (Xi) , (4)

where Xi is the actual policy she faces. The right-hand-side of (3) is a structural equa-
tion representation of the response function. Here U is a (potentially very large) vector
of pre-policy individual-attributes that generate heterogeneity in responses. The structural
equation representation is without loss of generality since we are free to make U as rich as
needed.

With this notation we can re-write 2 as

∆ (x′, x;w) = E [m (x′, U)|W = w,X = x′]− E [m (x, U)|W = w,X = x] .

The first expectation to the right of the equality is an average over U within the W = w

and X = x′ subpopulation, the second is an average over U within the W = w and X = x

subpopulation. A causal interpretation of ∆ (x′, x;w) requires that the distribution of U is
identical in these two subpopulations. If agents exercise some control over the policy they
face, then equality of these two distributions may be difficult to justify.

If the policy X varies independently of all other determinants of outcome heterogeneity U
conditional on the unobserved controls W :

U ⊥ X|W, (5)
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then

E [Y |W,X = x] = E [m (x, U)|W,X = x]

= E [m (x, U)|W ] ,

with the second line an implication of (5). Under (5) the difference (2) now equals

∆ (x′, x;w) = E [m (x′, U)−m (x, U)|W = w] ,

which does equal the average effect of an intervention on X from X = x to X = x′ (within
the subpopulation homogenous in W = w).

Condition (5) is rather strong. It implies, for example, that W includes all variables which
simultaneously determine the outcome and selection into different policies. Certain assign-
ment mechanisms ensure (5) holds; for example if policies are randomly assigned conditional
on W .

It can sometimes be helpful to think of (5) as an ‘as if’ conditional random assignment as-
sumption. This can be useful for evaluating the credibility of a particular empirical exercise.
It can also be limiting for economic applications, where it may be natural to assume that
agents choose X purposefully.

As an example, inspired by Imbens (2004), assume that agents choose the input X to max-
imize expected profits:

X = arg max
x∈R1

E [m (x, U)− c (x,W, V )|W,V ] .

Here we associate the outcome Y = m (X,U) with revenue and c (x,W, V ) is a cost function.
The agent’s information set consists of W – which is observed by the econometrician – and
V – which is not. Here the agent knows her cost function perfectly, but she may only
imperfectly predict the revenue effects of different input choices.

To keep the discussion simple, assume that the problem is well-defined with unique solution

X = k (W,V ) .

If V ⊥ U |W , then condition (5) will hold. In words: if the unobserved determinants of input
costs (V ) vary independently of the unobserved determinants of the outcome (U) conditional
on the observed confounders W , then condition (5) holds. This example suggests that any
variables which predict both cost and outcome heterogeneity would be useful to include in
W .
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Average structural function (ASF)

Given the potential outcome structure (3), condition (5) implies that within subpopulations
homogenous in W , the observed association between outcomes Y and inputs X coincides
with the hypothetical effect that we would have observed if X were, instead, intervened upon
directly.

It is useful to summarize these conditional on W effects by averaging them. The average
structural function (ASF) coincides with the expected outcome associated with assignment
to policy X = x for a random draw from the population

mASF (x) = E [m (x, U)] . (6)

When X is binary, the difference

ATE = mASF (1)−mASF (0)

= E [m (1, U)−m (0, U)]

= E [Y (1)− Y (0)]

coincides with the familiar average treatment effect (ATE) estimand from the program eval-
uation literature (e.g., Imbens, 2004).

Under condition (5) we can recover the ASF by “covariate adjustment”. It is the mechanics
of doing so that will occupy us here. A key result is that, under (5), the ASF has a partial
mean representation. Newey (1994) defines a partial mean to be the average of a conditional
expectation function over the marginal distribution of some covariates, holding the others
fixed. Consider the partial mean of the proxy variable regression function over the marginal
distribution of confounders:

E [q (W,x)] = E [E [Y |W,X = x]] (7)

= E [E [m (x, U)|W,X = x]]

= E [E [m (x, U)|W ]]

= E [m (x, U)] .

The first equality follows by the definition of the PVR. The second by (3), the third by
condition (5), and the fourth by the law-of-iterated expectations.

For the equality E [q (W,x)] = E [m (x, U)] to be well-defined we require a support condition.

4 © Bryan S. Graham 2015



Empirical Methods for Program Evaluation and Networks CEMFI, August 24 - 28, 2015

Let SW (x) denote the set of w values observed among individuals assigned to policy X = x:

SW (x) = {w : f (w|x) > 0} .

Let W denote the marginal support of W . We require that these two supports coincide

SW (x) = W, (8)

at any x for which we seek to learn mASF (x) . Condition (8) ensures that for any group of
units defined in terms of W , at least some experience policy X = x. This condition implies
that E [q (W,x)] is identified by the joint distribution of W , X and Y .

It is helpful to connect these arguments to those you may be familiar with from the program
evaluation literature. When X ∈ {0, 1} is binary we have, by Bayes’ Law, f (w|x = 1) =

p (w) f (w) /Q with p (w) = Pr (X = x|W = w) and Q = Pr (X = 1). To learn about the
ASF at X = 1 we require that the propensity score p (w) is positive for all w ∈W. To learn
about the ASF at X = 0 a similar argument implies that the propensity score must be less
that one at all values of w. Therefore, identifying the average treatment effect requires the
overlap condition

0 < p (w) < 1

for all w ∈W.

Covariate adjustment

Imbens (2004) and Imbens and Wooldridge (2009) survey methods of covariate adjustment
appropriate for when X is binary. I will not revisit this material here. Instead I wish to dis-
cuss how one might undertake covariate adjustment when X includes non-binary (including
continuously-valued) components. Notwithstanding its relevance for empirical research, this
is a surprisingly understudied area.

Newey (1994) presents kernel estimators for partial means like E [q (W,x)] . These estimators
converge at a slower than

√
N rate, with the precise rate depending on the number of

continuously valued components in X. This is not a limitation of methods, but rather one
imposed by the problem. Under (3), (5), and (8)

√
N consistent estimation of mASF (x) is

only possible when X is discretely-valued.

Under additional, semiparametric, restrictions on the potential response function (3),
√
N

estimation of the ASF may be possible. This is the approach that will be pursued here.
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Specifically, I will developed results for when the potential response function is of the form

Y (x) = m (x, U) = x′β0 + U. (9)

Equation (9) is restrictive relative to (3) above. First, individuals respond to changes in
X linearly. When X is scalar and binary-valued, linearity is not restrictive, but when X

is vector-valued and/or includes non-binary components it generally is restrictive. Second,
responses to changes in X are homogenous across units. All heterogeneity in the response
function is confined to the intercept. While each individual in the population has their own
response function, all such response functions are linear and parallel to one another. When
X is binary-valued (9) is called a constant additive treatment effect assumption.

Clearly (9) is a strong assumption. It is introduced here primarily to make a difficult esti-
mation problem easier. This, of course, does not mean it is a good assumption for empirical
work. Under the null of no causal effect of X on Y , then (9) is not restrictive. An implication
of this observation is that an analysis based on (9) can be used to test for causal effects.

To identify β0 we need two main assumptions. The first is a specialization of (5) above.

Assumption 1. (Mean Independence) For all x ∈ X and w ∈W

E [U |W = w,X = x] = E [U |W = w] = h0 (w) .

Note that we do not impose any restrictions of the form of h0 (W ). The second assumption
specializes (8) above.

Assumption 2. (Conditional Variation of X) Let v0 (w) = V (X|W = w) ; the matrix
E [v0 (W )] is positive definite.

This assumption implies that the policy X will vary conditional on W = w for a non-trivial
fraction of all possible subpopulations defined in terms of W .

The semiparametric model defined by (9) and Assumptions 1 and 2 coincides with the
following partially linear model (PLM)

Y = X ′β0 + h0 (W ) + V, E [V |W,X] = 0. (10)

Model (10) is among the most-widely studied semiparametric models (see Newey (1990) for
an overview and references). A seminal example of its use in economics is provided by Olley
and Pakes (1996) (cf., Wooldridge, 2009). Let Yt be the log of firm output in period t, Xt

the log of variable inputs, and W1t the log of capital. Capital, a semi-fixed input, evolves
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according to the law-of-motion

W1t = (1− δ)W1t−1 +W2t−1,

where δ is the rate-of-depreciation and W2t is period t investment. The period t stock of
capital depends on the prior period’s capital stock and choice of investment level.

The production function is Cobb-Douglas, which after taking logs, yields the output equation

Yt = X ′tβ0 +W ′
1tγ0 + At + Ut

where At is log productivity and Ut is an unforecastable production shock that is realized
after input decisions are made:

E [Ut|Wt, Xt] = 0.

Olley and Pakes (1996) show that, under certain conditions, the firm’s investment rule can
be inverted to obtain:

At = g0t (Wt) .

Period t log productivity is some function of period t capital stock and investment levels. If
we set ht0 (Wt) = W ′

1tγ0 + g0t (Wt) we have

Yt = X ′tβ0 + ht0 (Wt) + Ut.

The elasticity of output with respect to variable inputs Xt can be recovered by a semipara-
metric regression of Yt onto Xt and a nonparametric function of Wt (which includes both
capital stock and investment). The Olley and Pakes (1996) example indicates that (10) can
be given strong micro-foundations.

Let σ2
0 (w, x) = V (Y |W = w,X = x), Chamberlain (1992) calculated a semiparametric ef-

ficiency bound for β0 of

I (β0) = E
[

XX ′

σ2 (W,X)

]
− E

E
[

1
σ2(W,X)

X
∣∣∣W]E [ 1

σ2(W,X)
X
∣∣∣W]′

E
[

1
σ2(W,X)

∣∣∣W]
 , (11)

with a corresponding efficient score of (cf., Ma, Chiou and Wang, 2006)

Seff
β (Z, β0, g0 (W,X)) =

(
X − E [ω0 (W,X)X|W ]

E [ω0 (W,X)|W ]

)
ω0 (W,X) ρ (Z, β0, h0 (W )) , (12)
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where
ρ (Z, β, h (W )) = Y −X ′β − h (W )

and ω0 (w, x) = 1/σ2
0 (w, x) and

g (W,X) = (h (W ) , ω (W,X) ,E [ω0 (W,X)|W ] ,E [ω0 (W,X)X|W ])′ .

An outline of the derivation of (11) and (12) is provided in Appendix A.

For the balance of what follows I will assume that the conditional variance of Y givenW and
X is constant (i.e., homoscedasticity), but that this fact is not part of the prior restriction
used to calculate the efficiency bound. The inference procedures we develop will not be
sensitive to the homoscedasticity assumption.

Under homoscedasticity the efficient score simplifies to

Seff (Z, β0, e0 (W ) , h0 (W )) =
X − e0 (W )

σ2
0

ρ (Z, β0, h0 (W )) , (13)

where e0 (w) = E [X|W = w] is the mean of the policy variable given confounders. When X
is scalar and binary-valued e0 (w) is the propensity score. I will call e0 (w) the generalized
propensity score here.

For estimation it will be convenient to impose a parametric restriction on e0 (w). Because the
distribution of X givenW is ancillary for β0, this restriction does not change the information
bound (cf., Newey, 1990).

Assumption 3. (Generalized Propensity Score) f (x|w;φ) is a parametric family
of densities indexed by φ ∈ Φ ⊂ Rdim(φ) with (i) f0 (x|w) = f(x|w;φ0) at some unique
φ0 ∈ int (Φ), (ii) a maximum likelihood estimate (MLE) of φ0 equal to

φ̂ = arg max
φ∈Φ

N∑
i=1

ln f (Xi|Wi;φ)

with a score vector of Sφ (X|W ;φ) = ∇φf (X|W ;φ) /f (X|W ;φ), (iii) φ̂ p→ φ0 with E [SiS′i]
non-singular and the asymptotically linear representation

√
N
(
φ̂− φ0

)
= E

[
SφiS′φi

]−1 1√
N

N∑
i=1

Sφi + op (1) . (14)

where Sφi = Sφ (Xi|Wi;φ0) .

Sometimes Assumption 3 can be made to hold by design; as in a randomized experiment
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with known assignment rule. In other situations Assumption 3 reflects the fact that our
knowledge about the nature of selection is stronger than that regarding the form of the
outcome equation. That is, our prior knowledge regarding the form of e0 (w) is sharper than
it is for h0 (w) (cf., Robins, Mark and Newey, 1992).

In principle we could proceed without Assumption 3. Chamberlain (1986) and Robinson
(1988) provide estimators for this case. However, if W includes many components, as is
common in empirical work, these methods are impractical as they involve preliminary high-
dimensional nonparametric estimation steps.2

E-Estimation

I will work under (9) and Assumption 1, 2 and 3. Let e
(
w; φ̂

)
denote the maximum likelihood

estimate of the generalized propensity score. Newey (1990) proposed the estimator:

β̂E =

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
X ′i

]−1

×

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
Yi

]
. (15)

Robins, Mark and Newey (1992) explore the properties of (15) in detail, calling β̂E the
“E-Estimate”. Computation of β̂E is straightforward:

Algorithm 1. E-Estimation

1. Compute the maximum likelihood estimate of φ0. Construct e
(
Wi, φ̂

)
for i = 1, . . . , N.

2. Compute the linear instrumental variables regression fit of Yi onto Xi − e
(
Wi, φ̂

)
using Xi as the instrument (and excluding the constant term). The coefficient on
Xi − e

(
Wi, φ̂

)
equals β̂E.

To better understand the advantages and disadvantages of E-Estimation it is helpful to
consider an alternative approach. Covariate adjustment in the semiparametric model defined
by (9) and Assumption 1, 2 and 3 typically proceeds as follows. The researcher first augments
her prior by assuming a specific functional form for h0 (w) = h (w; η0). The most common
assumption is that h (w; η) = w′η. Under this assumption the ordinary least squares fit of Y
onto X and W provides a consistent estimate of β0. By the results of Chamberlain (1987),
the OLS estimate is also semiparametrically efficient (under homoscedasticity).

2Belloni, Chernozhukov and Hansen (2014) study estimation under the assumption that e0 (w) and h0 (w)
are well-approximated by a low-dimensional vector of basis functions.
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Now consider an approach which, like E-Estimation, does not impose any prior restrictions on
the form of h0 (w). It is clear that such an approach can do no better, in terms of asymptotic
precision, than the supremum of asymptotic variances across the set of all possible parametric
submodels for h0 (W ). That is the best we can do without a parametric assumption on h0 (w),
can be no better than the worst we can do when making such an assumption. Chamberlain
(1992) showed that this supremum is given by the inverse of (11), which, when evaluated
under the homoscedasticity assumption, equals

I (β0)−1 = σ2/E [v0 (W )] . (16)

To summarize: if we correctly specify h (w; η0) we can do no worse than (16), while if we
cannot a priori restrict the form of h0 (w) we can do no better than (16).

If we do, indeed, have sharp prior information about the form of h0 (w), then we should
incorporate that information into our estimation procedure. Unfortunately when W is very
high-dimensional this is rarely the case. Furthermore if we base estimation on an incorrectly
specified parametric model for h0 (w), our estimate of β will generally be inconsistent. These
considerations argue for an approach which does not require the analyst to make possibly
untenable a priori assumptions about the form of h0 (w). The E-estimator of Robins, Mark
and Newey (1992) provides such an approach, albeit one which presumes sufficient prior
knowledge regarding the form of the selection process to make maintaining Assumption
3 credible. This describes at least some empirical settings. Furthermore there are other
principled arguments for basing identification of causal effects on the propensity score (cf.,
Imbens and Rubin, 2015).

Large sample properties of β̂E

Let m (Z, φ, β) = (X − e (W ;φ)) (Y −X ′β). Some basic manipulation gives
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β̂E =

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
X ′i

]−1

×

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
(Y −X ′β0)

]

+

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
X ′i

]−1

×

[
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))
X ′i

]
β0

= β0 + E [v0 (W )]−1 ×

[
1

N

N∑
i=1

m
(
Zi, φ̂, β0

)]
+ op (1) ,

where the last equality follows from Assumption 2, the LLN, and a Slutsky Theorem.

A second mean value expansion in φ̂ about φ0 gives

√
N
(
β̂E − β0

)
= E [v0 (W )]−1 1√

N

N∑
i=1

m
(
Zi, φ̂, β0

)
= E [v0 (W )]−1 1√

N

N∑
i=1

m (Zi, φ0, β0)

+E [v0 (W )]−1

{
1

N

N∑
i=1

∂m (Zi, φ0, β0)

∂φ

}
√
N
(
φ̂− φ0

)
+ op (1) .

Now observe that

E [m (Z, φ0, β0)|W = w] = E [ (X − e (W ;φ0)) (Y −X ′β0)|W = w] = 0,

or in integral form:
ˆ
m (z, φ0, β0) f0 (y|w, x) f (x|w;φ0) dxdy = 0. (17)

Differentiating (17) through the integral with respect to φ gives:

ˆ
∂

∂φ′
m (z, φ0, β0) f0 (y|w, x) f (x|w;φ0) dxdy = −

ˆ
m (z, φ0, β0)Sφ (x|w;φ0)′

×f0 (y|w, x) f (x|w;φ0) dxdy,
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or, equivalently,

E
[
∂m (Z, φ0, β0)

∂φ

∣∣∣∣W = w

]
= −E

[
m (Z, φ0, β0)S′φ

∣∣W = w
]
, (18)

which is a Generalized Information Matrix Equality (GIME) result (e.g., Newey, 1990, p.
104).

Using (14) and (18) we have

√
N
(
β̂E − β0

)
= E [v0 (W )]−1

{
1√
N

N∑
i=1

mi

−E
[
mS′φ

]
E [SφSφ′]

−1 1√
N

N∑
i=1

Sφi

}
+ op (1)

=
E [v0 (W )]−1

√
N

N∑
i=1

{
mi − E

[
mS′φ

]
E
[
SφS′φ

]−1 Sφi
}

+ op (1) (19)

for mi = m (Zi, φ0, β0) .

One implication of the asymptotically linear representation (19) is that practitioners can
ignore sampling error in φ̂ and get conservative confidence intervals. Similar results have
been shown numerous times for the binary X case (e.g., Robins, Rotnitzky and Zhao, 1994;
Wooldridge, 2007). A second implication is that over-parameterizing the conditional distri-
bution of X given W will not decrease asymptotic precision.

It turns out that we can get a more insightful expression of (19). One that also suggests
valuable guidelines for applied work. Observe that m (Z, φ0, β0) = ψβ (Z, β0, φ0, h0 (W )) +

r (W,X, φ0, h0 (W )) with

ψβ (Z, β, φ, h (W )) = (X − e (W ;φ)) (Y −X ′β − h (W )) (20)

and
r (W,X, φ, h (W )) = (X − e (W ;φ))h (W ) . (21)

Let r0 (W,X) = r (W,X, φ0, h0 (W )) and note that E [r0 (W,X)|W ] = 0. Note further that
Sφ is also conditionally mean zero given W . Next observe that

E
[
∂ψβ
∂φ

∣∣∣∣W] = −∂e (W ;φ0)

∂φ
E [ρ (Z, β0, h0 (W ))|W ] = 0.
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With these preliminaries in place, start with the integral
ˆ
ψβf0 (y|x,w) f (x|w;φ0) f0 (w) = 0

and differentiate with respect to φ:
ˆ
∂ψβ
∂φ′

f0 (y|x,w) f (x|w;φ0) f0 (w) = −
ˆ {

ψβS′φ
}
f0 (y|x,w) f (x|w;φ0) f0 (w) = 0.

Putting all these pieces together gives

E
[
mS′φ

]
= E

[
ψβS′φ

]
+ E

[
rS′φ
]

= E
[
rS′φ
]
.

Plugging this into our influence function (19) we get

√
N
(
β̂E − β0

)
=

E [v0 (W )]−1

√
N

N∑
i=1

{
mi − E

[
mS′φ

]
E
[
SφS′φ

]−1 Sφi
}

+ op (1)

=
E [v0 (W )]−1

√
N

N∑
i=1

{
ψβi +

[
ri − E

[
rS′φ
]
E
[
SφS′φ

]−1 Sφi
]}

+ op (1) .(22)

An immediate implication of (22) is

√
N
(
β̂E − β0

)
D→ N

(
0, I (β0)−1 + E

[
(r − ΠrSSφ) (r − ΠrSSφ)′

])
(23)

with ΠrS = E
[
rS′φ
]
E
[
SφS′φ

]−1
. Here I (β0) corresponds to the information bound (16)

evaluated under the auxiliary homoscedasticity assumption.

Local semiparametric efficiency

In general β̂E will not attain the bound for the model defined by (9) and Assumption 1, 2
and 3 (where the bound is evaluated under the homoscedasticity assumption). However the
form of the asymptotic variance function provides insight into the structure of inefficiency
and, consequently, how to construct approximately efficient estimators.

For concreteness assume that a generalized linear model (GLM) with a canonical response
function is used to model the generalized propensity score. Let k (w) be the vector of linearly
independent basis functions entering the GLM link function. For example, in the Poisson
case e (w;φ) = exp

(
k (w)′ φ

)
. Given this GLM structure we have (assuming X is scalar to
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keep the notation simple)
Sφ = (X − e (W ;φ0)) k (W ) . (24)

Now consider the following assumption.

Assumption 4. (Response Model) h0 (w) = k (w)′ π0 for all w ∈W.

Under (24) and Assumption 4 (again assuming X is scalar to keep the notation simple)

E
[
rS′φ
]

= E
[
(X − e (W ;φ0))2 h0 (W ) k (W )′

]
= π′0E

[
(X − e (W ;φ0))2 k (W ) k (W )′

]
= π′0E

[
SφS′φ

]
and hence

E
[
(r − ΠrSSφ) (r − ΠrSSφ)′

]
= 0.

The E-Estimator is locally efficient at (24) and Assumption 4. By locally efficient I mean that
β̂E is a consistent estimate of β0 in the semiparametric model defined by (9) and Assumption
1, 2 and 3. If Assumption 4 also “happens to be true” in the population sampled from (but
is not part of the prior restrictions), then β̂E attains the semiparametric efficiency bound of
(16). See Newey (1990) or Tsiatis (2006) for more details on the local efficiency concept.

Since, in general, the GLM with canonical link assumption is a natural one for practitioners,
the main implication of this results is that one should include good predictors of the outcome
variable as well as the policy variable in the generalized propensity score model.

Algorithm 2. Locally Efficient E-Estimation

1. Assume that the generalized propensity score takes the GLM with canonical response
form. Let the vector of basis functions in the response, k (w), be the union of all
linearly independent predictors of both X and Y .

2. Compute the maximum likelihood estimate of φ0. Construct e
(
Wi, φ̂

)
for i = 1, . . . , N.

3. Compute the linear instrumental variables regression fit of Yi onto Xi − e
(
Wi, φ̂

)
using Xi as the instrument (and excluding the constant term). The coefficient on
Xi − e

(
Wi, φ̂

)
equals β̂E.

This E-Estimate is consistent for β0 under (9) and Assumption 1, 2 and 3. It is locally
efficient at Assumption 4.
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Double Robustness

In turns out that consideration of Assumption 4 has a benefit which extends beyond effi-
ciency. Suppose that the researcher incorrectly specifies the generalized propensity score
(i.e., Assumption 3 does not hold in the population), but that Assumption 4 is true. In such
a situation β̂E continues to provide a consistent estimate of β0. We say that the E-Estimate
is doubly robust.

To understand this property consider the population mean of the efficient score where e0 (w)

is replaced with some other function e∗ (w):

E
[
X − e∗ (W )

σ2
(Y −X ′β0 − h0 (W ))

]
= E

[
X − e∗ (W )

σ2
E [ (Y −X ′β0 − h0 (W ))|W,X]

]
= 0.

Hence a method of moments estimator based on the quasi-efficient score, with an misspecified
generalized propensity score estimate but the true h0 (W ), remains consistent for β0.

Let φ̂ be the quasi-MLE estimate of φ∗ 6= φ0. By the properties of the first order conditions
of GLM problem we have that

∑N
i=1

(
Xi − e

(
Wi; φ̂

))
k (Wi) = 0. The E-Estimate solves

0 =
1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))(
Y −X ′iβ̂E

)
=

1

N

N∑
i=1

(
Xi − e

(
Wi; φ̂

))(
Y −X ′iβ̂E − k (Wi)

′ π0

)
,

where the second line follows from the fact that
∑N

i=1

(
Xi − e

(
Wi; φ̂

))
k (Wi) = 0. Note

that β̂E is precisely the parameter value which sets the sample mean of the quasi-efficient
score to zero.

Covariate adjustment in empirical work

A substantial portion of applied work involves computing the least squares fit of Y onto a
vector of policy variables of interest X and additional controls W . When e0 (w) = wΠxw

is linear in W , the E-Estimate and OLS estimate of β0 will coincide; however, in generally
they will differ. The advantage of E-Estimation is that it provides a principled way for a
researcher to (i) incorporate her knowledge about the selection process into estimation, (ii)
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make her inferences robust to misspecification of the outcome equation and (iii), through the
double robustness property, generate two chances for correct inference. These virtues argue
for greater use of E-Estimation in empirical research.

Under (9) and Assumption 1, 2 and 3 heteroscedastic robust confidence intervals computed
by a linear instrumental variables program, which implicitly ignore the effects of estimation
error in e

(
Wi; φ̂

)
, will be conservative (i.e., have asymptotic coverage greater than 1− α).

If Assumption 4 additionally holds, these confidence intervals will have correct large sample
coverage. In the case where Assumption 3 is false, but Assumption 4 is true, failing to correct
for sampling error in e

(
Wi; φ̂

)
may result in undercoverage in large samples. In practice

the Bayesian Bootstrap can be used to construct confidence intervals which incorporate all
sources of sampling error.

A Derivation of semiparametric efficiency bound

Chamberlain (1992) derived the semiparametric efficiency bound (SEB) for β0 in the model
defined by (9) and Assumption 1 and 2, using a multinomial approximation argument. In
this Appendix I sketch the SEB calculation using the general approach developed by Bickel,
Klaasen, Ritov and Wellner (1993) as exposited by Newey (1990, Section 3). First, I char-
acterize the nuisance tangent space. Second, I calculate the residual associated with the
projection of the score function for β onto the nuisance tangent space. The form of the
efficient influence function and variance bound then follows from Theorem 3.2 of Newey
(1990).

Step 1: Characterization of the nuisance tangent space

The joint density of z = (w, z, y) is given by

f0 (w, x, y) = f0 (y|w, x) f0 (w, x) .

Assumption 1 also requires that f0 (y|w, x) satisfy the conditional moment restriction
ˆ
ρ (z, β0, h0 (w)) f0 (y|w, x) dy = 0,

where
ρ (z, β, h (w)) = y − x′β − h (w) .

Let θ = (β′, η′)′ be the parameters of a parametric submodel with associated score vector
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Sθ =
(
S′β,S′η

)′ partitioned conformably. We have f (w, x, y; θ) = f0 (w, x, y) at θ = θ0. The
submodel also satisfies the conditional moment restriction

ˆ
ρ (z, β0, h (w; η0)) f (y|w, x; θ0) dy = 0. (25)

The submodel score vector equals

Sθ (w, x, y; θ) = Sθ (y|w, x) + Tθ (w, x; θ)

where

Sθ (w, x, y; θ) = ∇θ log f (w, x, y; θ) ,

Sθ (y|w, x; θ) = ∇θ log f (y|w, x; θ) ,

Tθ (w, x; θ) =

(
0

∇η log f (w, x; θ)

)
=

(
0

Tη (w, x; )

)
.

The last line above follows because W and X are ancillary to β and hence their marginal
density does not depend on β (i.e., f (w, x; θ) = f (w, x; η)).

By the usual conditional mean zero property of scores we have

E [Sθ (Y |W,X)|W,X] = E [Tη (W,X)] = 0, (26)

where the suppression of (a sub-vector of) θ in a function means it is evaluated at its
population value (e.g., Tη (W,X) = Tη (W,X; η0)).

Condition (25) imposes additional restrictions on the form of Sθ (Y |W,X) beyond (26). To
see the structure of these restrictions differentiate (25) with respect to β and η and evaluate
the result at θ = θ0. This yields the pair of equalities

X = E [ρ (Z, β0, h0 (W )) sβ (Y |W,X)|W,X]

∂h (W ; η0)

∂η
= E [ρ (Z, β0, h0 (W )) sη (Y |W,X)|W,X] . (27)

Restrictions (26) and (27) imply that the submodel score vector takes the form

Sβ (W,X, Y ) = − X

σ2
0 (W,X)

ρ (Z, β,0h0 (W ))

Sη (W,X, Y ) = −∂h (W ; η0)

∂η

1

σ2
0 (W,X)

ρ (Z, β,0h0 (W )) + Tη (W,X) . (28)
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Equations (26), (27) and (28) suggest that the nuisance tangent space is

T =

{
k (W )

σ2
0 (W,X)

ρ (Z, β,0h0 (W )) + t (W,X)

}
, (29)

with k (w) an unrestricted vector-valued function of w and k(W )

σ2
0(W,X)

ρ (Z, β,0h0 (W )) and t (W,X)

satisfying

E

[{
ρ (Z, β,0h0 (W ))

σ2
0 (W,X)

}2

‖k (W )‖2

]
< ∞

E [t (W,X)] = 0.

Note also that, by Assumption1, k(W )

σ2
0(W,X)

ρ (Z, β,0h0 (W )) is conditionally mean zero given W
and X.

Step 2: Calculation of the efficient influence function

The nuisance tangent set (29) is the sum of two orthogonal components. Projection onto this
sum therefore coincides with the sum of the projections onto each component alone. However,
as Sβ is orthogonal to t (W,X) (since it is conditionally mean zero given W and X), we only
need to calculate the projection onto the first component of (29). This projection coincides
with the linear regression of Sβ = −X ρ0

σ2
0
onto the infinite dimensional vector of functions of

the form k(W )

σ2
0
ρ0 with k (W ) an arbitrary function ofW (and where I let ρ0 = ρ (Z, β,0h0 (W ))

and σ2
0 = σ2

0 (W,X) to economize on notation; albeit at the risk of some confusion). This
projection coincides with the conditional linear predictor

E∗
[
Sβ|

ρ0

σ2
0

;W

]
= E

[
Sβ
ρ0

σ2
0

∣∣∣∣W]× E

[{
ρ0

σ2
0

}2
∣∣∣∣∣W
]−1

ρ0

σ2
0

= E

[{
ρ0

σ2
0

}2

X

∣∣∣∣∣W
]
× E

[{
ρ0

σ2
0

}2
∣∣∣∣∣W
]−1{

ρ0

σ2
0

}2

= E
[
X

σ2
0

∣∣∣∣W]× E
[

1

σ2
0

∣∣∣∣W]−1
ρ0

σ2
0

,

where the last equality follows from the fact that E [ρ2
0|W,X] = σ2

0.

The efficient score is the residual vector Seff
β = Sβ − E∗

[
Sβ| ρ0σ2

0
;W
]
, which evaluates to

Seff
β (Z, β0, g0 (W,X)) =

(
X − E [ω0 (W,X)X|W ]

E [ω0 (W,X)|W ]

)
ω0 (W,X) ρ (Z, β0h0 (W )) ,
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as given by (12) in the main text. The information bound for β0 is given by (cf., Theorem
3.2 of Newey (1990))

I (β0) = E
[
Seff
β

(
Seff
β

)′]
= E

[(
X − E [ω0X|W ]

E [ω0|W ]

)(
X − E [ω0X|W ]

E [ω0|W ]

)′
ω2

0ρ
2
0

]
= E [ω0XX

′]− E
[
E [ω0X|W ]E [ω0X|W ]′

E [ω0|W ]

]
,

which also coincides with Chamberlain’s (1992, p. 569) calculation.
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