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Consider a network with adjacency matrix D = d and corresponding degree sequence D+
def
=

(D1+, . . . , DN+) = (d1+, . . . , dN+)
def
= d+. Let DN,d+ denote the set of all undirected N ×N

adjacency matrices with degree counts equal to d+. This note describes an algorithm for
sampling uniformly from the set DN,d+ .

Sampling uniformly from DN,d+ has a number of uses. First, as we will see later, it facilitates
conditional inference on, and conditional estimation of, certain models of network formation.
Second, in some settings the researcher may only observe agents’ degree and not their actual
links. For example a researcher may know how many friends an individual has, but not who
they are. In such cases, properties of the class of networks consistent with the available
degree information may be of interest.

A concrete example is helpful. Let f (D) be some function of the adjacency matrix, say its
transitivity index. Among all undirected networks with degree sequences coinciding with
D’s what fraction have a transitivity index less than the one observed in the network in
hand? Let

∣∣DN,d+

∣∣ denote the size, or cardinality, of DN,d+ . We seek to evaluate

Pr (f (D) ≤ c) =

∑
v∈DN,d+

1 (f (v) ≤ c)∣∣DN,d+

∣∣ . (1)

Direction enumeration of all the elements of DN,d+ is generally not feasible. Even for networks
that includes as few as 10 agents, this set may have millions of elements. We therefore require
a method of sampling from DN,d+ uniformly and also estimating its size.

Two complications arise. First, it is not straightforward to construct a random draw from
DN,d+ . Second, we must draw uniformly from this set. Fortunately the first challenge is
solvable using ideas from the discrete math literature. To ensure our draws are uniform we
use importance sampling (e.g., Owen, 2013).

Researchers in graph theory and discrete math have studied the construction of graphs with
fixed degrees and, in particular, provided conditions for checking whether a particular degree
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sequence is graphical (e.g., Sierksma and Hoogeveen, 1991). We say that D+ is graphical if
there is feasible undirected network with degree sequence D+. Not all integer sequences are
graphical. For example, there is no feasible undirected network of three agents with degree
sequence D+ = (3, 2, 1).

Recently, Del Genio, Kim, Toroczkai and Bassler (2010), Blitzstein and Diaconis (2011),
Zhang and Chen (2012) and others have constructed (reasonably) efficient procedures for
sampling uniformly from the set DN,d+ . In this note I outline the importance sampling
algorithm of Blitzstein and Diaconis (2011).1

Determining whether a candidate degree sequence is graphical

A sequential network construction algorithm begins with a matrix of zeros and sequentially
adds links to it until its rows and columns sum to the desired degree sequence. Unfortunately,
unless the links are added appropriately, it is easy to get “stuck” (in the sense that a certain
point in the process it becomes impossible to reach a graph with the desired degree and the
researcher must restart the process (e.g., Snijders, 1991)).

Blitzstein and Diaconis (2011) propose an algorithm that is guaranteed to produce a matrix
from the set Dd+,N . A key feature of this algorithm is cleverly using checks for whether an
integer sequence is graphic when adding links.

Let D+ = (D1+, . . . , DN+) be a sequence of candidate degrees for each of N agents in
a network. Without loss of generality assume that the elements of D+ are arranged in
descending order so that D1+ ≥ D2+ ≥ · · · ≥ DN+. In a paper published in Hungarian,
Erdos and Gallai (1961) showed D+ is graphical if and only if

∑N
i=1Di+ is even and

k∑
i=1

Di+ ≤ k (k − 1) +
N∑

i=k+1

min (k,Di+) for each k ∈ {1, . . . , N} .

To show necessity of the condition observe that for any set S of k agents in the network
there can be at most

(
k
2

)
= 1

2
k (k − 1) links between them. For the remaining N − k agents

with i /∈ S there can be at most min (k,Di+) links from i to agents in S.

The study of graphic integer sequences has a long history in discrete math. Sierksma and
Hoogeveen (1991) summarize several criteria that can be used to check whether D+ is is
graphical. Blitzstein and Diaconis (2011) base their sampling algorithm on a simple recursive
test for whether D+ is graphical due to Havel (1955) and Hakimi (1962).

1The work of Del Genio, Kim, Toroczkai and Bassler (2010) and Blitzstein and Diaconis (2011) was
evidently undertaken independently. The method of Zhang and Chen (2012) improves upon their algorithms.
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Theorem 1. (Havel-Hakimi) Let Di+ > 0, if D+ does not have at least Di+ positive entries
other than i it is not graphical. Assume this condition holds. Let D̃+ be a degree sequence
of length N − 1 obtained by
[i] deleting the ith entry of D+ and
[ii] subtracting 1 from each of the Di+ highest elements in D+ (aside from the ith one).
D+ is graphical if and only if D̃+ is graphical. If D+ is graphical, then it has a realization
where agent i is connected to any of the Di+ highest degree agents (other than i).

Proof. See Blitzstein and Diaconis (2011).

Theorem 1 is suggestive of a sequential approach to building an undirected network with
degree sequence D+. The procedure begins with a target degree sequence D+. It starts by
choosing a link partner for the lowest degree agent (with at least one link). It chooses a
partner for this agent from among those with higher degree. A one is then subtracted from
the lowest degree agent and her chosen partner’s degrees. This procedure continues until the
residual degree sequence (the sequence of links that remain to be chosen for each agent)
is zero.

To describe the method proposed Blitzstein and Diaconis (2011) we require some additional
notation. Let (⊕i1,...,ikD+) be the vector obtained by adding a one to the i1, . . . , ik elements
of D+:

(⊕i1,...,ikD+)j =

{
Dj+ + 1 for j ∈ {i1, . . . , ik}
Dj+ otherwise

Let (	i1,...,ikD+) be the vector obtained by subtracting one from the i1, . . . , ik elements of
D+:

(	i1,...,ikD+)j =

{
Dj+ − 1 for j ∈ {i1, . . . , ik}
Dj+ otherwise

Algorithm 1. (Blitzstein and Diaconis) A sequential algorithm for constructing a random
graph with degree sequence D+ = (D1+, . . . , DN+)

′ is

1. Let G be an empty adjacency matrix.

2. If D+ = 0 terminate with output G

3. Choose the agent i with minimal positive degree Di+.

4. Construct a list of candidate partners J = {j 6= i : Gij = Gji = 0 and 	i,j D+ graphical}.

5. Pick a partner j ∈ J with probability proportional to its degree in D+.
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6. Set Gij = Gji = 1 and update D+ to 	i,jD+.

7. Repeat steps 4 to 6 until the degree of agent i is zero.

8. Return to step 2.

The input for Algorithm 1 is the target degree sequence D+ and the output is an undirected
adjacency matrix G with G′ι = D+.

An example is:

(3, 2, 2, 2, 1)→ (3, 1, 2, 2, 0)→ (2, 0, 2, 2, 0)→ (1, 0, 2, 1, 0)→ (0, 0, 1, 1, 0)→ (0, 0, 0, 0, 0)

Importance sampling

Let YN,d+ denote the set of all possible sequences of links outputted by Algorithm 1 given
input D+ = d+. Let G (Y ) be the adjacency matrix induced by link sequence Y . Let Y and
Y ′ be two different sequences produced by the algorithm. These sequences are equivalent
if their “end point” adjacency matrices coincide (i.e., if G (Y ) = G (Y ′)). We can partition
YN,d+ into a set of equivalence classes, the number of such classes coincides with the number
of feasible networks with degree distribution D+ (i.e., with the cardinality of DN,d+). Let
c (Y ) denote the number of possible link sequences produced by Algorithm 1 that produce
Y ’s end point adjacency matrix (i.e., the number of different ways in which Algorithm 1 can
generate a given adjacency matrix).

Let i1, i2, . . . , iM be the sequence of agents chosen in step 3 of Algorithm 1 in which Y is the
output. Let a1, . . . , am be the degree sequences of i1, . . . , iM at the time when each agent
was first selected in step 3, then

c (Y ) =
M∏
k=1

ak!

Let σ (Y ) be the probability that Algorithm 1 produces link sequence Y . Note that σ (Y )

is easy to compute. Each time the algorithm choose a link in step 5 record the probability
with which it was chosen (i.e., the residual degree of the chosen agent divided by the sum
of the residual degrees of all agents in the choice set). The product of all these probabilities
equals σ (Y ).

Let f (G) be some function of the adjacency matrix and consider the expected value
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E
[
π (G (Y ))

c (Y )σ (Y )
f (G (Y ))

]
=

∑
y∈YN,d

π (G (y))
c (y)σ (y)

f (G (y))σ (y)

=
∑

y∈YN,d

π (G (y))
c (y)

f (G (y))

=
∑

g∈DN,d

∑
{y:G(y)=g}

π (g)

c (y)
f (g)

=
∑

g∈DN,d

π (g) f (g)

= Eπ [f (G)] .

The ratio π (G (Yt)) /c (Yt)σ (Yt) is called the likelihood ratio or the importance weight.
If we set f (G) to the constant function we see that the expected value of this weight is one.
This suggests the analog estimator

µ̂f(G) =

[
T∑
t=1

π (G (Yt))

c (Yt)σ (Yt)

]−1
×

T∑
t=1

π (G (Yt))

c (Yt)σ (Yt)
f (G (Yt)) .

Setting π (G) = 1 we get a procedure for estimating the expectation of f (G) when G is
drawn uniformly from DN,d+ .
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