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a b s t r a c t

We study nonparametric estimation of density functions for undirected dyadic random
variables (i.e., random variables defined for all n

def
≡
(N
2

)
unordered pairs of agents/nodes

in a weighted network of order N). These random variables satisfy a local dependence
property: any random variables in the network that share one or two indices may be
dependent, while those sharing no indices in common are independent. In this setting,
we show that density functions may be estimated by an application of the kernel
estimation method of Rosenblatt (1956) and Parzen (1962). We suggest an estimate
of their asymptotic variances inspired by a combination of (i) Newey’s (1994) method
of variance estimation for kernel estimators in the ‘‘monadic’’ setting and (ii) a variance
estimator for the (estimated) density of a simple network first suggested by Holland and
Leinhardt (1976). More unusual are the rates of convergence and asymptotic (normal)
distributions of our dyadic density estimates. Specifically, we show that they converge at
the same rate as the (unconditional) dyadic sample mean: the square root of the number,
N , of nodes. This differs from the results for nonparametric estimation of densities and
regression functions for monadic data, which generally have a slower rate of convergence
than their corresponding sample mean.

© 2022 Published by Elsevier B.V.

1. Introduction

Many important social and economic variables are naturally defined for pairs of agents (or dyads). Examples include
rade between pairs of countries (e.g., Tinbergen, 1962), input purchases and sales between pairs of firms (Atalay et al.,
011), research and development (R&D) partnerships across firms (König et al., 2019) and friendships between individuals
Christakis et al., 2010). Dyadic data arises frequently in the analysis of social and economic networks. In economics such
nalyses are predominant in, for example, the analysis of international trade flows. See Graham (2022) for many other
xamples and references.
While the statistical analysis of network data began almost a century ago, rigorously justified methods of inference for

etwork statistics are only now emerging (cf. Goldenberg et al., 2009). In this paper we study nonparametric estimation

✩ We thank Michael Jansson, Konrad Menzel, and the referees and editor for helpful suggestions, as well as audiences at Berkeley, Brown, Toulouse,
Warwick, Bristol, Cambridge, LSE, University College London and the Conference Celebrating Whitney Newey’s Contributions to Econometrics for
their useful questions and suggestions. All the usual disclaimers apply. Financial support from National Science Foundation, United States of America
grant SES #1851647 is gratefully acknowledged.

∗ Corresponding author.
E-mail addresses: bgraham@econ.berkeley.edu (B.S. Graham), fniu@berkeley.edu (F. Niu), jlpowell@arizona.edu (J.L. Powell).
URL: http://bryangraham.github.io/econometrics/ (B.S. Graham).
Please cite this article as: B.S. Graham, F. Niu and J.L. Powell, Kernel density estimation for undirected dyadic data. Journal of Econometrics (2023),
https://doi.org/10.1016/j.jeconom.2022.06.011.

https://doi.org/10.1016/j.jeconom.2022.06.011
0304-4076/© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.jeconom.2022.06.011
https://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:bgraham@econ.berkeley.edu
mailto:fniu@berkeley.edu
mailto:jlpowell@arizona.edu
http://bryangraham.github.io/econometrics/
https://doi.org/10.1016/j.jeconom.2022.06.011


B.S. Graham, F. Niu and J.L. Powell Journal of Econometrics xxx (xxxx) xxx

o
a
n
d
r
i
i

t
s
n
d
w
T
c
s
“
p
g

S
t
c
e

o
c

a
n

2

M

a

f the density function of a (continuously-valued) dyadic random variable. Examples included the density of migration
cross states, trade across nations, liabilities across banks, or minutes of telephone conversation among individuals. While
onparametric density estimation using independent and identically distributed random samples, henceforth “monadic”
ata, is well-understood, its dyadic counterpart has, to our knowledge, not yet been studied. There is, however, a closely-
elated literature on kernel density estimation for random fields (e.g., Carbon et al., 1997), but the mixing conditions
mposed in this literature – asymptotic independence between observations as the difference in their pairs of indices
ncreases – are not applicable in the model considered here.1

Holland and Leinhardt (1976) derived the sampling variance of the link frequency in a simple network (and of other
low order subgraph counts). A general asymptotic distribution theory for subgraph counts, exploiting recent ideas from
the probability literature on dense graph limits (Diaconis and Janson, 2008; Lovász, 2012), was presented in (Bickel et al.,
2011).2 Menzel (2017) presents bootstrap procedures for inference on the mean of a dyadic random variable. Our focus
on nonparametric density estimation appears to be novel. Density estimation is, of course, a topic of intrinsic interest to
econometricians and statisticians, but it also provides a relatively simple and canonical starting point for understanding
dyadic nonparametric estimation more generally. In the conclusion of this paper we discuss ongoing work on other non-
and semi-parametric estimation problems using dyadic data.

We show that an (obvious) adaptation of the Rosenblatt (1956) and Parzen (1962) kernel density estimator is applicable
o dyadic data. While our dyadic density estimator is straightforward to define, its rate-of-convergence and asymptotic
ampling properties, depart significantly from its monadic counterpart. Let N be the number of sampled agents and
=
(N
2

)
the corresponding number of dyads. Estimation is based upon the n dyadic outcomes. Due to dependence across

yads sharing an agent in common, the rate of convergence of our density estimate is (generally) much slower than it
ould be with n i.i.d. outcomes. This rate-of-convergence is also invariant across a wide range of bandwidth sequences.
his property is familiar from the econometric literature on semiparametric estimation (Powell, 1994). Indeed, from a
ertain perspective, our nonparametric dyadic density estimate can be viewed as a semiparametric estimator (in the
ense that it can be thought of as an average of nonparametrically estimated densities). We also explore the impact of
degeneracy” – which arises when dependence across dyads vanishes – on our sampling theory; such degeneracy features
rominently in Menzel’s (2017) innovative analysis of inference on dyadic means. We expect that many of our findings
eneralize to other non- and semi-parametric network estimation problems.
In Section 2 we present our maintained data/network generating process and proposed kernel density estimator.

ection 3 explores the mean square error properties of this estimator, while Section 4 outlines asymptotic distribution
heory. Section 5 presents a consistent variance estimator, which can be used to construct Wald statistics and Wald-based
onfidence intervals. We summarize the results of a small simulation study in Section 6. In Section 7 we discuss various
xtensions and ongoing work. Calculations not presented in the main text are collected in Appendix B.
It what follows we interchangeably use unit, node, vertex, agent and individual all to refer to the i = 1, . . . ,N vertices

f the sampled network or graph. We denote random variables by capital Roman letters, specific realizations by lower
ase Roman letters and their support by blackboard bold Roman letters. That is Y , y and Y respectively denote a generic
random draw of, a specific value of, and the support of, Y . For Wij a dyadic outcome, or weighted edge, associated with
gents i and j, we use the notation W =

[
Wij
]
to denote the N×N adjacency matrix of all such outcomes/edges. Additional

otation is defined in the sections which follow.

. Model and estimator

odel
Let i = 1, . . . ,N index a simple random sample of N agents from some large (infinite) network of interest. A pair of

gents constitutes a dyad. For each of the n =
(N
2

)
sampled dyads, that is for i = 1, . . . ,N − 1 and j = i + 1, . . . ,N , we

observe the (scalar) random variable Wij, generated according to

Wij = W (Ai, Aj, Vij) = W (Aj, Ai, Vij), (1)

where Ai is a node-specific random vector of attributes (of arbitrary dimension, not necessarily observable), and Vij is an
unobservable scalar random variable which is continuously distributed on R with density function fV (v).3 Observe that
the function W (a1, a2, v12) is symmetric in its first two arguments, ensuring that Wij = Wji is undirected.

In what follows we directly maintain (1), however, it is also a consequence of assuming that the infinite graph sampled
from is jointly exchangeable (Aldous, 1981; Hoover, 1979). Joint exchangeability of the sampled graph W =

[
Wij
]
implies

that [
Wij
] D

=
[
Wπ(i)π(j)

]
(2)

1 We are grateful to Javier Hidalgo and Oliver Linton for pointing out this connection.
2 See Nowicki (1991) for a summary of earlier research in this area.
3 In words we observe the weighted subgraph induced by the randomly sampled agents.
2
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or every π ∈ Π where π : {1, . . . ,N} → {1, . . . ,N} is a permutation of the node indices. Put differently, when node
abels have no meaning we have that the “likelihood” of any simultaneous row and column permutation of W is the same
s that of W itself.4 See Menzel (2017) for a related discussion.
Our target object of estimation is the marginal density function fW (w) ofWij, defined as the derivative of the cumulative

istribution function (c.d.f.) of Wij,

Pr{Wij ≤ w}
def
≡ FW (w) =

∫ w

−∞

fW (u)du.

o ensure this density function is well-defined on the support of Wij, we assume that the unknown function W (a1, a2, v)
is strictly increasing and continuously differentiable in its third argument v, and we also assume that Ai and Aj are
statistically independent of the ‘‘error term’’ Vij for all i and j. Under these assumptions, by the usual change-of-variables
formula, the conditional density of Wij given Ai = a1 and Aj = a2 takes the form

fY |AA(w|a1, a2) = fV (W−1(a1, a2, w)) ·

⏐⏐⏐⏐∂W (a1, a2,W−1(a1, a2, w))
∂v

⏐⏐⏐⏐−1

.

n the derivations below we will assume this density function is bounded and twice continuously differentiable at w with
ounded second derivative for all a1 and a2; this will follow from the similar smoothness conditions imposed on the
rimitives W−1(·, ·, w) and fV (v).
To derive the marginal density of Wij we assume that, the {Ai} sequence is independently and identically distributed

i.i.d.), as is the {Vij} sequence, and that they are mutually independent. Under these conditions, we can define the
onditional densities of Wij given Ai = a or Aj = a alone as

fW |A(w|a) ≡ E[fW |AA(w|a, Aj)] = E[fW |AA(w|Ai, a)],

and, averaging, the marginal density of interest as

fW (w)
def
≡ E[fW |AA(w|Ai, Aj)] = E[fW |A(w|Ai)].

Let i, j, k and l index distinct agents. The assumption that {Ai} and {Vij} are i.i.d. implies that while Wij varies
independently of Wkl (since the {i, j} and {k, l} dyads share no agents in common), Wij will not vary independently of Wik
as both vary with Ai (since the {i, j} and {i, k} dyads both include agent i). This type of dependence structure is sometimes
referred to as “dyadic clustering” in empirical social science research (Fafchamps and Gubert, 2007; Cameron and Miller,
2014; Aronow et al., 2017). The implications of this dependence structure for density estimation and – especially –
inference is a key area of focus in what follows.

Estimator
Given this construction of the marginal density fW (w) of Wij, it can be estimated using an immediate extension of the

kernel density estimator for monadic data first proposed by Rosenblatt (1956) and Parzen (1962):

f̂W (w) =
(N
2

)−1
N−1∑
i=1

N∑
j=i+1

1
h
K
(

w − Wij

h

)
(3)

def
≡

1
n

∑
i<j

Kij,

where

Kij
def
≡

1
h
K
(

w − Wij

h

)
.

ere K (·) is a kernel function assumed to be (i) bounded (K (u) ≤ K̄ for all u), (ii) symmetric (K (u) = K (−u)), (ii), and
ero outside a bounded interval (K (u) = 0 if |u| > ū); we also require that it (iv) integrates to one (

∫
K (u)du = 1).

he bandwidth h = hN is assumed to be a positive, deterministic sequence (indexed by the number of nodes N) that
ends to zero as N → ∞, and will satisfy other conditions imposed below. A discussion of the motivation for the kernel
stimator f̂W (w) and its statistical properties under random sampling (of monadic variables) can be found in Silverman
1986), chapters 2 and 3).

4 For W =
[
Wij
]
the N × N weighted adjacency matrix and P any conformable permutation matrix

Pr (W ≤ w) = Pr (PWP ≤ w)

for all w ∈ W = R
(N
2

)
.

3
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. Rate of convergence analysis

To formulate conditions for consistency of f̂W (w), we will evaluate its expectation and variance, which will yield
onditions on the bandwidth sequence hN for its mean squared error to converge to zero.
A standard calculation yields a bias of f̂W (w) equal to (see Appendix B)

E
[
f̂W (w)

]
− fW (w) = h2B(w) + o(h2) (4)

= O(h2
N ),

with

B (w)
def
≡

1
2

∂2fW (w)
∂w2

∫
u2K (u) du.

Eq. (4) coincides with the bias of the kernel density estimate based upon a random (‘‘monadic’’) sample.
The expression for the variance of f̂W (w), in contrast to that for bias, does differ from the monadic (i.i.d.) case due to

the (possibly) nonzero covariance between Kij and Kik for j ̸= k:

V
(
f̂W (w)

)
= V

⎛⎝1
n

∑
i<j

Kij

⎞⎠
=

(
1
n

)2∑
i<j

∑
k<l

C(Kij, Kkl)

=

(
1
n

)2

[n · C(K12, K12) + 2n(N − 2) · C(K12, K13)]

=
1
n
[V(K12) + 2(N − 2) · C(K12, K13)] .

he third line of this expression uses the fact that, in the summation in the second line, there are n terms with (i, j) = (k, l)
and N(N − 1)(N − 2) = 2n(N − 2) terms with one subscript in common; as noted earlier, when Wij and Wkl have no
ubscripts in common they are independent (and thus uncorrelated).
To calculate the dependence of this variance on the number of nodes N , we analyze V(K12) and C(K12, K13). Beginning

ith the former,

V(K12) = E
[
(K12)2

]
−

(
E[f̂W (w)]

)2
=

1
h2

∫ [
K
(

w − s
h

)]2
fW (s)ds + O(1)

=
1
h

∫
[K (u)]2fW (w − hu)du + O(1)

=
fW (w)

h
·

∫
[K (u)]2du + O(1)

def
≡

1
hN

Ω2(w) + O(1),

here

Ω2(w)
def
≡ fW (w) ·

∫
[K (u)]2du.

ike the expected value, this own variance term is of the same order of magnitude as in the monadic case,

V(K12) = O
(
1
h

)
.

However, the covariance term C(Kij, Kil), which would be absent for i.i.d. monadic data, is generally nonzero. Since

E[Kij · Kik] = E
[∫ ∫

1
h2

[
K
(

w − s1
h

)]
·

[
K
(

w − s2
h

)]
· fW |AA(s1|A1, A2)fW |AA(s2|A1, A3)ds1ds2

]
= E

[∫
[K (u1)] fW |A(w − hu1|A1)du1
4
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∫
[K (u2)] fW |A(w − hu2|A1)du2

]
,

= E
[
fW |A(w|A1)2

]
+ o(1),

where the second line uses the change of variables s1 = w − hu1 and s2 = w − hu2 and mutual independence of A1, A2,
and A3). It follows that

C(Kij, Kik) = E[Kij · Kik] −

(
E[f̂W (w)]

)2
=
[
E
[
fW |A(w|A1)2

]
− fW (w)2

]
+ O(h2)

= V(fW |A(w|A1)) + o(1)
def
≡ Ω1(w) + o (1) ,

with

Ω1(w)
def
≡ V(fW |A(w|A1)).

Therefore,

V
(
f̂W (w)

)
=

1
n
[2(N − 2) · C(K12, K13) + V(K12)]

=
4
N

Ω1(w) +

(
1
nh

Ω2(w) −
4
n
Ω1(w)

)
+ o

(
1
N

)
(5)

= O
(
4Ω1(w)

N

)
+ O

(
Ω2(w)
nh

)
.

and the mean-squared error of f̂W (w) is, using (4) and (5),

MSE
(
f̂W (w)

)
=

(
E[f̂W (w)] − fW (w)

)2
+ V

(
f̂W (w)

)
=h4B(w)2 +

4
N

Ω1(w) +

(
1
nh

Ω2(w) −
4
n
Ω1(w)

)
(6)

+ o(h4) + o
(

1
N

)
=O

(
h4)

+ O
(
4Ω1(w)

N

)
+ O

(
Ω2(w)
nh

)
Provided that Ω1(w) ̸= 0 and the bandwidth sequence hN is chosen such that

Nh → ∞, Nh4
→ 0 (7)

as N → ∞, we get that

MSE
(
f̂W (w)

)
= o

(
1
N

)
+ O

(
1
N

)
+ o

(
1
N

)
= O

(
1
N

)
,

and hence that
√
N(f̂W (w) − fW (w)) = Op(1).

In fact, the rate of convergence of f̂W (w) to fW (w) will be
√
N as long as Nh4

≤ C ≤ Nh for some C > 0 as N → ∞,
lthough the mean-squared error will include an additional bias or variance term of O(N−1) if either Nh or (Nh4)−1 does
ot diverge to infinity.
To derive the MSE-optimal bandwidth sequence we minimize (6) with respect to its first and third terms, this yields

n optimal bandwidth sequence of

h∗

N (w) =

[
1
4

Ω2 (w)

B (w)2
1
n

] 1
5

(8)

= O
(
N−

2
5

)
.

his sequence satisfies condition (7).
5
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Interestingly, the rate of convergence of f̂W (w) to fW (w) under condition (7) is the same as the rate of convergence of
the sample mean

W̄
def
≡

1
n

∑
i<j

Wij (9)

to its expectation µW
def
≡ E[Wij] when E[W 2

ij ] < ∞. Similar variance calculations to those for f̂w(w) yield (see also Holland
and Leinhardt, 1976; Menzel, 2017)

V(W̄ ) = O
(
V(Wij)

n

)
+ O

(
4V(E[Wij|Ai])

N

)
= O

(
1
N

)
,

rovided E[Wij|Ai] is non-degenerate, yielding
√
N(W̄ − µ) = Op(1).

Thus, in contrast to the case of i.i.d monadic data, there is no convergence-rate “cost” associated with nonparametric
estimation of fW (w). The presence of dyadic dependence, due to its impact on estimation variance, does slow down the
feasible rate of convergence substantially. With iid data the relevant rate for density estimation would be n2/5 when the
SE-optimal bandwidth sequence is used. Recalling that n = O

(
N2
)
, the

√
N rate we find here corresponds to an n1/4

ate. The slowdown from n2/5 to n1/4 captures the rate of convergence costs of dyadic dependence on the variance of our
ensity estimate.
The lack of dependence of the convergence rate of f̂W (w) to fW (w) on the precise bandwidth sequence chosen is

nalogous to that for semiparametric estimators defined as averages over nonparametrically-estimated components
Newey, 1994). Defining Kji

def
≡ Kij, the estimator f̂W (w) can be expressed as

f̂W (w) =
1
N

N∑
i=1

f̂W |A(w|Ai),

where

f̂W |A(w|Ai)
def
≡

1
N − 1

N∑
j̸=i,j=1

Kij.

Holding i fixed, the estimator f̂W |A(W |Ai) can be shown to converge to fW |A(w|Ai) at the nonparametric rate
√
Nh, but the

verage of this nonparametric estimator over Ai converges at the faster (parametric) rate
√
N . In comparison, while

W̄ =
1
N

N∑
i=1

Ê
[
Wij
⏐⏐ Ai
]
,

or

Ê
[
Wij
⏐⏐ Ai
] def

≡
1

N − 1

N∑
j̸=i,j=1

Wij,

he latter converges at the parametric rate
√
N , and the additional averaging to obtain W̄ does not improve upon that

ate.

. Asymptotic distribution theory

To derive conditions under which f̂W (w) is approximately normally distributed it is helpful to decompose the difference
between f̂W (w) and fW (w) into four terms:

f̂W (w) − fW (w) =
1
n

∑
i<j

(Kij − E[Kij|Ai, Aj]) (10)

+
1
n

∑
i<j

E[Kij|Ai, Aj] (11)

−

(
E[Kij] +

2
N

N∑
(E[Kij|Ai] − E[Kij])

)

i=1

6
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+
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N

N∑
i=1

(E[Kij|Ai] − E[Kij]) (12)

+ E[Kij] − fW (w) (13)
≡ T1 + T2 + T3 + T4.

To understand this decomposition observe that the projection of f̂W (w) =
1
n

∑
i<j Kij onto {Ai}

N
i=1 equals, by the

ndependence assumptions imposed on {Ai} and {Vij}, the U-statistic
(N
2

)−1∑
i<j E[Kij|Ai, Aj]. This U-Statistic is defined

in terms of the latent i.i.d. random variables {Ai}
N
i=1.

The first term in this expression, line (10), is f̂W (w) minus the projection/U-Statistic described above. Each term in
this summation has conditional expectation zero given the remaining terms (i.e., the terms form a martingale difference
sequence).

The second term in the decomposition, line (11), is the difference between the second-order U-statistic 1
n

∑
i<j E[Kij|Ai,

Aj] and its Hájek projection .e.g., (van der Vaart, 2000),5 the third term, line (12), is a centered version of that Hájek
projection, and the final term, line (13), is the bias of f̂W (w). A similar “double projection” argument was used by Graham
(2017) to analyze the large sample properties of the Tetrad Logit estimator.

If the bandwidth sequence h = hN satisfies the conditions Nh → ∞ and Nh4
→ 0, the calculations in the previous

section can be used to show that the first, second, and fourth terms of this decomposition (i.e., T1, T2, and T4) will all
converge to zero when normalized by

√
N . In this case, T3, which is an average of i.i.d. random variables, will be the

leading term asymptotically such that
√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w)), (14)

ssuming Ω1(w) = V(fW |A(w|Ai)) > 0.
If, however, the bandwidth sequence h has Nh → C < ∞ (a “knife-edge” undersmoothing condition similar to one

onsidered by Cattaneo et al. (2014) in a different context), then both T1 and T3 will be asymptotically normal when
ormalized by

√
N . To accommodate both of these cases in a single result, we will show that a standardized version of

the sum T1 +T3 will have a standard normal limit distribution, although the first, T1, term may be degenerate in the limit.
n this case the asymptotic distribution of f̂W (w) becomes

√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w) +

2
C

· Ω2(w)), (15)

n expression which reduces to (14) when C → ∞.
In Appendix B we show that both T2 and T4 will be asymptotically negligible when normalized by the convergence

ate of T1 + T3, such that the asymptotic distribution of f̂W (w) will only depend on the T1 and T3 terms. We then show
hat the sum T1 + T3 of the U-statistic and Hájek projection terms can be expressed as a sum of a triangular array that
s an appropriately-normalized martingale difference sequence (MDS), and we verify the relevant stability and Lyapunov
onditions to ensure that a central limit theorem for triangular array MDS applies to this sum, yielding the asymptotic
istributions (14) and (15).

egeneracy
Degeneracy arises when V(E[Kij|Ai]) = Ω1 (w) = 0, yielding a degenerate asymptotic distribution of f̂W (w) when

h → ∞. In terms of the underlying network generating process (NGP), degeneracy arises when the conditional density
f Wij at w given Ai = a is constant in a (i.e., when V

(
fW |A (w| Ai)

)
= 0).

A simple example of such an NGP, discussed by Menzel (2017), sets Ai equal −1 with probability π and 1 otherwise,
nd then assumes

Wij = AiAj + Vij

ith Vij standard normal. In this case the conditional density fW |A (w| Ai) is the mixture

fW |A (w| Ai) = πφ (w + Ai) + (1 − π) φ (w − Ai)

ith φ (·) the standard normal density function. Unconditionally the density is

fW (w) =
[
π2

+ (1 − π)2
]
φ (w − 1) + 2π (1 − π) φ (w + 1) .

bserve that, if π = 1/2, then fW |A (w| Ai = 1) = fW |A (w| Ai = −1) = fW (w) and hence that V
(
fW |A (w| Ai)

)
= 0.6

Degeneracy arises in this case, even though there is non-trivial dependence across dyads sharing an agent in common. If
π ̸= 1/2, then V

(
fW |A (w| Ai)

)
> 0, but one might worry about “near degeneracy” when π is close to 1/2.

5 That is the projection of 1
n

∑
i<j E[Kij|Ai, Aj] onto the linear subspace consisting of all functions of the form

∑N
i=1 gi (Ai).

6 Degeneracy also arises when w = 1.
7
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Menzel (2017) shows that under degeneracy, the limit distribution of the sample mean, W̄ , defined in Eq. (9), may be
non-Gaussian. This occurs because (i) the T1 and T2 terms in a double projection decomposition of W̄ analogous to the one
used here for f̂W (w) will be of equal order and T2, the Hájek Projection error, may be non-Gaussian (as is familiar from
the theory of U-Statistics, e.g., Chapter 12 of van der Vaart (2000)). The situation is both more complicated and simpler
here. In the case of the estimated density f̂W (w), if the bandwidth sequence h = hN satisfies the conditions Nh → ∞

and Nh4
→ 0, then T2 will be of smaller order than T1 and hence not contribute to the limit distribution irrespective of

whether the NGP is degenerate or not. In particular, under degeneracy the Liapunov condition (20) continues to hold for
r = 3 since

T (N)∑
t=1

E
(
XNt

σN

)3

= O
(

1
√
nh

)
and it follows straightforwardly that 1

σN

(
f̂W (w) − fW (w)

)
continues to be normal in the limit.

The ‘‘knife-edge’’ undersmoothing bandwidth sequence is primarily of interest because it results in a sequence where
both T1 and T3 contribute to the limit distribution. In practice this does not mean that the researcher should set
h = hN ∝ N−1. Based on the theoretical analysis sketched above, we recommend choosing a sequence that tends to
zero slightly faster than mean squared error optimal sequence where h = hN ∝ n−1/5.7

Under such a sequence we will have
√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w))

under non-degeneracy and
√
nh(f̂W (w) − fW (w))

D
→ N (0, Ω2(w))

under degeneracy. Although the rate of convergence of f̂W (w) to fW (w) is faster in the case of degeneracy this will not affect
inference in practice as long as an appropriate estimate of σN is used; that is working directly with (f̂W (w) − fW (w))/σN
ensures rate-adaptivity. Note also that, in the absence of degeneracy, the MSE optimal bandwidth sequence could be used.
By slightly undersmoothing relative to this sequence, we ensure that the limit distribution remains unbiased in case of
degeneracy.

5. Asymptotic variance estimation

To construct Wald-based confidence intervals for f̂W (w), a consistent estimator of its asymptotic variance is needed.
When Nh → C < ∞, the asymptotic variance depends on both

Ω2(w)
def
≡ fW (w) ·

∫
[K (u)]2du

and

Ω1(w)
def
≡ V

(
fW |A(w|Ai)

)
.

In this section we present consistent estimators for both of these terms.
A simple estimator of Ω2(w) is

Ω̃2(w) =
h
n

∑
i<j

K 2
ij , (16)

he consistency of which we demonstrate in Appendix B:

Ω̃2(w)
p

→ Ω2(w). (17)

he estimator Ω̃2(w) uses the second moment of Kij instead of its sample variance to estimate Ω2(w); in practice we
ecommend, similar to Newey (1994) in the context of monadic kernel-based estimation, the less conservative alternative:

Ω̂2(w) ≡ h

⎛⎝⎛⎝1
n

∑
i<j

K 2
ij

⎞⎠−

(
f̂W (w)

)2⎞⎠
= h

⎛⎝1
n

∑
i<j

(
Kij − f̂W (w)

)2⎞⎠
7 In practice ‘‘plug-in’’ bandwidths that would be appropriate in the absence of any dyadic dependence across the

{
Wij
}
i<j might work well;

although this remains an unexplored conjecture.
8
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f

W

w

A

= Ω̃2(w) + op(1)
= Ω2(w) + op(1).

We next turn to estimation of

Ω1(w) = V
(
fW |A(w|A1)

)
= lim

N→∞

C(Kij, Kij)

where i ̸= k. A natural sample analog estimator, following a suggestion by Graham (2022) in the context of parametric
dyadic regression, involves an average over the three indices i, j, and k:

Ω̂1(w) ≡
1

N(N − 1)(N − 2)

∑
i̸=j̸=k

(Kij − f̂W (w))(Kik − f̂W (w))

≡

(
N
3

)−1 ∑
i<j<k

Sijk − f̂W (w)2,

or Sijk =
1
3

(
KijKik + KijKjk + KikKjk

)
..8 In Appendix B we show that

Ω̂1(w)
p

→ Ω1(w). (18)

Inserting these estimators, Ω̂1(w) and Ω̂2(w), into the formula for the variance of f̂W (w) yields a variance estimate of

σ̂ 2
N =

1
nh

Ω̂2(w) +
2(N − 2)

n
Ω̂1(w). (19)

e end this section by observing that

σ̂ 2
N =

1
n2

∑
i<j

(
Kij − f̂W (w)

)2

+
2(N − 2)

n

⎛⎝ 1
N(N − 1)(N − 2)

∑
i̸=j̸=k

(Kij − f̂W (w))(Kik − f̂W (w))

⎞⎠
=

1
n2

⎛⎝∑
i<j

∑
k<l

dijkl(Kij − f̂W (w))(Kkl − f̂W (w))

⎞⎠ ,

here

dijkl = 1{i = j, k = l, i = l, or j = k}.

s Graham (2022) notes, this coincides with the estimator for

V(W̄ ) = V

⎛⎝1
n

∑
i<j

Wij

⎞⎠
proposed by Fafchamps and Gubert (2007), replacing “Wij − W̄ ” with “Kij − K̄”, with K̄

def
≡ f̂W (w) (see also Holland and

Leinhardt, 1976; Cameron and Miller, 2014; Aronow et al., 2017). Our variance estimator can also be viewed as a dyadic
generalization of the variance estimate proposed by Newey (1994) for “monadic” kernel estimates.

6. Simulation study

Our simulations design is based upon the example used to discuss degeneracy in Section 4. As there we let Ai equal
−1 with probability π and 1 otherwise. We generate Wij

Wij = AiAj + Vij

with Vij ∼ N (0, 1). We set π = 1/3 and estimate the density fW (w) at w = 1.645.
We present results for three sample sizes: N = 100, 400 and 1600. These sample sizes are such that, for a ‘‘sufficiently

non-degenerate’’ NGP, the standard error of f̂W (w) would be expected to decline by a factor of 1/2 for each increase
in sample size (if the bandwidth is large enough to ensure that the Ω2(w)

nh variance term is negligible relative to the
2Ω1(w)(N−2)

n ≈
4Ω1(w)

N one). We set the bandwidth equal to the MSE-optimal one presented in Eq. (8). This is an ‘oracle’

8 See also the variance estimator for density presented in Holland and Leinhardt (1976).
9
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Table 1
Monte Carlo designs.
N 100 400 1,600

Panel A: Design & Bandwidth

π 1
3

1
3

1
3

w 1.645 1.645 1.645
h∗

N (w) 0.2496 0.1431 0.0822

Panel B: Theoretical Sampling Properties

h2B(w) −0.0033 −0.0011 −0.0004

ase
(
f̂W (w)

)
=

√
2Ω1(w)(N−2)

n +
Ω2(w)

nh 0.0117 0.0053 0.0025

ase (T3) =

√
2Ω1(w)(N−2)

n 0.0098 0.0049 0.0025

ase (T1) =

√
Ω2(w)

nh 0.0065 0.0021 0.0007

Notes: Rows 1 through 3 list the basic Monte Carlo design and bandwidth parameter choices. The bandwidths coincide with
the MSE optimal one given in Eq. (8). Panel B gives pencil and paper calculations for the bias of f̂W (w), as well as its asymptotic
standard error (ase), based upon, respective, Eqs. (4) and (5) in Section 3. The asymptotic standard errors of T1 and T3 , as
defined in Section 4, are also separately given.

Table 2
Monte Carlo results.
N 100 400 1,600

median bias −0.0028 −0.0010 −0.0006
standard deviation 0.0112 0.0051 0.0025
median aŝe

(
f̂W (w)

)
0.0173 0.0068 0.0028

coverage (iid) 0.678 0.551 0.390
coverage (FG) 0.995 0.987 0.967

Notes: A robust measure of the standard deviation of f̂W (w) is reported in row 2. It equals the difference
between the 0.95 and 0.05 quantiles of the Monte Carlo distribution of f̂W (w) divided by 2 × 1.645.
Row 4 reports the coverage of a nominal 95 percent Wald-based confidence interval that ignores the
presence of dyadic dependence. Row 5 reports the coverage properties of a nominal 95 percent Wald-
based confidence interval that uses the Fafchamps and Gubert (2007) variance estimate discussed in
Section 4.

bandwidth choice. Developing feasible data-based methods of bandwidth selection would be an interesting topic for future
research.

Table 1 presents the main elements of each simulation design. Panel B of the table lists ‘‘pencil and paper’’ bias and
asymptotic standard error calculations based upon the expressions presented in Section 3. Panel B also presents analytic
estimates of the standard deviations of the T1 and T3 terms in the decomposition of f̂W (w) used to derive its limit
distribution. In the given designs both terms of are similar magnitude despite the fact that the contribution of the T1
term is asymptotically negligible in theory.

Table 2 summarizes the results of 1000 Monte Carlo simulations. The median bias and standard deviation of our density
estimates across the Monte Carlo replications closely track our theoretical predictions (compare rows 1 and 2 of Table 2
with Rows 1 and 2 of Panel B of Table 1). Row 3 of the table reports the median ‘‘Fafchamps and Gubert’’ asymptotic
standard error estimate. This standard error estimate is generally larger than its asymptotic counterpart. Consequently
the coverage of confidence intervals based upon it is conservative (Row 5). The degree of conservatism is declining in
sample size, suggesting that – as expected – the ‘‘Fafchamps and Gubert’’ asymptotic standard error estimate is closer
to its theoretical counterpart as N grows. Row 4 of the table reports the coverage of confidence intervals based upon
standard errors which ignore the presence of dyadic dependence; these intervals – as expected – fail to cover the true
density frequently enough.

The simulations suggest, for the designs considered, that the asymptotic theory presented in Sections 3 and 4
provides an accurate approximation of finite sample behavior. Our variance estimate is a bit conservative for the designs
considered; whether this is peculiar to the specific design considered or a generic feature of the estimate is unknown.9 As
with bandwidth selection, further exploration of methods of variance estimation in the presence of dyadic dependence is
warranted.

7. Extensions

There are a number of avenues for extension or modification of the simple results for scalar density estimation
presented above. One variant of these results would apply when the dyadic variable Wij lacks the idiosyncratic component

9 We observe that our variance estimate implicitly includes an estimate of the variance of T , which is negligible in the limit.
2
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ij, i.e., when

Wij = W (Ai, Aj),

or {Ai} an i.i.d. sequence. This case arises when Wij is a measure of “distance” between the attributes of nodes i and j, for
example,

Wij =

√(
Ai − Aj

)2
,

or Ai a scalar measure of “location” for agent i. The asymptotic distribution of f̂W (w) derived above should be applicable to
this case as long as the conditional density function fW |A(w|a) of Wij given Ai is well-defined, which would be implied if Ai
as a continuously-distributed component given its remaining component (if any) and the function W (·) is continuously
ifferentiable in that component. In the decomposition of f̂W (w)− fW (w) for this case, the term corresponding to T1 would
e identically zero (as would Ω2(w)), but the T2 term could still be shown to be asymptotically negligible using Lemma
.1 of Powell et al. (1989) as long as Nh → ∞.
Another straightforward extension of this analysis would be to directed dyadic data, where Wij is observed for all pairs

f indices with i ̸= j and Wij ̸= Wji with positive probability. The natural generalization of the data generation process
ould be

Wij = W (Ai, Bj, Vij),

ith {Ai}, {Bj}, and {Vij} mutually independent and i.i.d. with Vij ̸= Vji in general. Here the conditional densities

fW |A(w|a) = E[fW |AB(w|Ai = a, Bj)]

nd

fW |B(w|b) = E[fW |AB(w|Ai, Bj = b)]

ill differ, and the asymptotic variance of f̂W (w) will depend upon

Ω1(w) = V
(
1
2

(
fW |A(w|Ai) + fW |B(w|Bi)

))
in a way analogous to how Ω1(w), defined earlier, does in the undirected case analyzed in this paper.

Yet another generalization of the results would allow Wij to be a p-dimensional, jointly-continuous Wij random vector.
The estimator

f̂W (w) =
1
n

N−1∑
i=1

N∑
j=1+1

1
hp K

(
w − Wij

h

)
f the p-dimensional density function fW (w) will continue to have the same form as derived in the scalar case, provided
hp

→ ∞ (or Nhp
→ C > 0) as long as the relevant bias term T4 is negligible. If the density is sufficiently smooth and

(·) is a ‘‘higher-order kernel’’ with∫
K (u)du = 1,∫

uj1
1 u

j2
2 ...ujp

p K (u)du = 0 for ji ∈ {0, . . . , q} with
p∑

i=1

ji < q,

nd this integral is well-defined when
∑p

i=1 ji = q, then the bias term T4 will satisfy

T4 ≡ E
[
f̂W (w)

]
− fW (w)

= O(hq).

ssuming that fW (w) is q-times continuously differentiable for a positive integer q > p/2 that is large enough so that
h2q

→ 0 while Nhp
≥ C > 0, the bias term T4 will be asymptotically negligible and the density estimator f̂W (w) will still

e
√
N-consistent, since then

MSE
(
f̂W (w)

)
= O

(
h2q)

+ O
(
4Ω1(w)

N

)
+ O

(
Ω2(w)
nhp

)
= o

(
1
N

)
+ O

(
1
N

)
+ O

(
1
N

)
= O

(
1
N

)
,

11
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nd f̂W (w) will be asymptotically normal, with asymptotic distribution of the form (14) if Nhp
→ ∞ or (15) if Nhp

→

C < ∞, using analogous arguments to the p = 1 case considered above.10 As discussed at the end of Section 3, though
the implicit estimator f̂W (w|Ai) of the conditional density fW (w|Ai) would converge at the nonparametric rate

√
Nhp, its

ample average over Ai, f̂W (w), would converge at the parametric
√
N rate, as familiar for semiparametric problems.

Finally, a particularly useful extension of the kernel estimation approach for dyadic data is to the estimation of the
conditional expectation (or conditional density) of one observable dyadic variable Yij conditional on the value w of another
bservable dyadic variable Wij, i.e., estimation of

g(w) ≡ E[Yij|Wij = w]

hen the vector Wij has p jointly-continuously distributed components conditional upon any remaining components. Here
he Nadaraya–Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) would be defined as

ĝ(w) ≡

∑
i̸=j K

(
w−Wij

h

)
Yij∑

i̸=j K
(

w−Wij
h

) ,

and the model for the dependent variable Yij would be analogous to that for Wij, with

Yij = Y (Ai, Bj,Uij)
Wij = W (Ai, Bj, Vij)

in the directed case (and Bj ≡ Aj for undirected data), with {Ai}, {Bj}, and {(Ui, Vij)} assumed mutually independent and i.i.d.
The large-sample theory would treat the numerator of ĝ(w) similarly to that for the denominator (which is proportional
to the kernel density estimator f̂W (w)); our initial calculations for undirected data with a scalar, continuously-distributed
egressor Wij yield

√
N
(
ĝ(w) − g(w)

) D
→ N (0, 4Γ1(w)),

when Nhp
→ ∞ and Nh4

→ 0, where

Γ1(w) ≡ V
(
E[Yij|Ai,Wij = w] · fW |A(w|Ai)

fW (w)

)
.

If this calculation is correct, then, like the density estimator f̂W (w) the rate of convergence for the estimator ĝ(w) of
he conditional mean g(w) would be the same as the rate for the estimator µ̂Y = Ȳ of the unconditional expectation
y = E[Yij] = E[g(Wij)], in contrast to the estimation using i.i.d. (monadic) data. In a companion paper (Graham et al.,
021), we consider this problem for the special case where Wij = g(Xi, Xj), for Xi an observable node-specific covariate,
ut have yet to extend the results to a general dyadic regressor Wij. An even more challenging case, suggested by a
eviewer, would involve estimation of the conditional density of a continuous dyadic variable Yij given a dyadic (Wij) or
ode-specific (Xi) observable covariate, which would involve joint density estimation of Yij and Wij (or Xi) if the latter is
ontinuously distributed. We intend to pursue these extensions in future work.

ppendix A. Summary of assumptions and main results

Here is a list of the regularity conditions used to derive the results concerning the univariate density estimator f̂W (w)
n (3).

A1. For i = 1, . . . ,N − 1 and j = i + 1, . . . ,N , the scalar, observable random variable Wij is generated as

Wij = W (Ai, Aj, Vij) = W (Aj, Ai, Vij),

where Ai, Aj, and Vij are random and assumed to be mutually independent.
A2. The random variable Vij is unobservable, scalar, and continuously distributed on R with density function f (v) that is

c-times continuously differentiable for some c ≥ 2.
A3. The unknown function W (a1, a2, v) is strictly increasing and c-times continuously differentiable in v for the same

c ≥ 2.
A4. The sequence {Ai} is independently and identically distributed over i, and {Vij} is independently and identically

distributed over i and j. Furthermore, Ai and Aj are independent of Vkl for all i, j = 1, . . . ,N and k = 1, . . . ,N − 1,
j = i + 1, . . . ,N .

A5. The kernel function K (u) defining the estimator f̂W (w) in (3) satisfies

10 If the bandwidth converged to zero at the MSE-optimal rate h∗
= O(N−(p+2q)), these asymptotic distributions would include a bias term, since

the squared bias would be of the same order of magnitude as the variance.
12
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(i) k(u) is twice differentiable, with k′′(u) < k0 for some k0;
(ii) k(u) = k(−u);
(iii) k(u) = 0 if |u| > l0 for some l0 > 0; and
(iv)

∫
u2k(u)du = m2 < ∞.

A6. The bandwidth sequence h = hN is nonrandom with h → 0 and Nh → ∞ as N → ∞.

Under these conditions, the derivations in the main text and appendix below yield the following results:

R1. The mean-squared error for f̂W (w) satisfies

MSE
(
f̂W (w)

)
= O(h4) + O

(
1
nh

)
+ O

(
1
N

)
,

for n ≡

(
N
2

)
= O(N2).

R2. If Nh4
≤ C ≤ Nh for some C > 0 as N → ∞, then

f̂W (w) − fW (w) = Op

(
1

√
N

)
.

R3. If Nh → ∞, Nh4
→ 0,

√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w)),

for

Ω1(w)
def
≡ V(fW |A(w|A1)) > 0

R4. If Ω1(w)
def
≡ V(fW |A(w|A1)) > 0 and if Nh → C < ∞, Nh4

→ 0,

√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w) +

2
C

· Ω2(w)),

where

Ω2(w)
def
≡ fW (w) ·

∫
[K (u)]2du.

R5. If Ω1(w)
def
≡ V(fW |A(w|A1)) = 0 and if Nh → ∞, Nh4

→ 0,
√
nh(f̂W (w) − fW (w))

D
→ N (0, Ω2(w)).

R6. Defining

Kij
def
≡

1
h
K
(

w − Wij

h

)
,

consistent estimators of Ω1(w) and Ω2(w) are

Ω̂1(w) ≡
1

N(N − 1)(N − 2)

∑
i̸=j̸=k

(Kij − f̂W (w))(Kik − f̂W (w))

≡ Ω1(w) + op(1)

and

Ω̃2(w) =
h
n

∑
i<j

K 2
ij

≡ Ω2(w) + op(1).
13
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ppendix B. Proofs

erivation of bias expression, Eq. (4) of the main text
Under the conditions imposed in the main text, the expected value of f̂W (w) is

E
[
f̂W (w)

]
= E

[
1
h
K
(

w − W12

h

)]
=

∫
1
h
K
(

w − s
h

)
fW (s)ds

=

∫
K (u) fW (w − hu)du

= fW (w) +
h2

2
∂2fW (w)

∂w2

∫
u2K (u) du + o(h2)

≡ fW (w) + h2B(w) + o(h2).

he first line in this calculation follows from the fact that Wij is identically distributed for all i, j, the third line uses the
hange-of-variables s = w −hu, and the fourth line follows from a second-order Taylor’s expansion of fW (w −hu) around
= 0 and the fact that∫

u · K (u)du = 0

ecause K (u) = K (−u).

emonstration of asymptotic negligibility of T2 and T4
Eq. (11), which defines T2, involves averages of the random variables

E[Kij|Ai, Aj] =

∫
1
h
K
(

w − s
h

)
fW |AA(s|Ai, Aj)ds

=

∫
K (u) fW |AA(w − hu|Ai, Aj)du

and

E[Kij|Ai] =

∫
1
h
K
(

w − s
h

)
fW |A(s|Ai)ds

=

∫
K (u) fW |A(w − hu|Ai)du

which are both assumed bounded, so T2 can be written, after some re-arrangement, as the degenerate second-order
U-statistic,

T2 =
1
n

∑
i<j

(
E[Kij|Ai, Aj] − E[Kij|Ai] − E[Kij|Aj] + E[Kij]

)
with all summands uncorrelated. This implies, squaring and taking expectations, that

E[T 2
2 ] =

1
n2

∑
i<j

E[
(
E[Kij|Ai, Aj] − E[Kij|Ai] − E[Kij|Aj] + E[Kij]

)2
]

≤
5
n
E[(E[Kij|Ai, Aj])]2

= O
(
1
n

)
,

o

T2 = Op

(
1

√
n

)
= Op

(
1
N

)
.

urning to the fourth term, defined in Eq. (13), we demonstrated in Section 3 that

T = h2B(w) + o(h2) = O(h2).
4
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B
.0.1. Derivation of the asymptotic distribution of T1 + T3
We start by rewriting the sum of terms T1 and T3 as

T1 + T3 =
1
n

∑
i<j

(Kij − E[Kij|Ai, Aj]) +
2
N

N∑
i=1

(E[Kij|Ai] − E[Kij])

def
≡

T (N)∑
t=1

XNt ,

where

T (N) ≡ N + n

and the triangular array XNt is defined as

XN1 =
2
N

(E[K12|A1] − E[K12]) ,

XN2 =
2
N

(E[K23|A2] − E[K23]) ,

...

XNN =
2
N
(E[KN,1|AN ] − E[KN,1]),

XN,N+1 =
1
n
(K12 − E[K12|A1, A2]),

XN,N+2 =
1
n
(K13 − E[K13|A1, A3])

...

XN,N+N−1 =
1
n
(K1N − E[K1N |A1, AN ]),

...

XN,N+n =
1
n
(KN−1,N − E[KN−1,N |AN−1, AN ]).

That is, {XNt} is the collection of terms of the form
2
N
(E[Kij|Ai] − E[Kij])

for i = 1, . . . ,N (with j ̸= i) and
1
n
(Kij − E[Kij|Ai, Aj])

for i = 1, . . . ,N − 1 and j = i + 1, . . . ,N . Using the independence assumptions on {Ai}
N
i=1 and {Vij}i<j, as well as iterated

expectations, it is tedious but straightforward to verify that

E[XNt |{XNs, s < t}] = 0,

that is, XNT is a martingale difference sequence (MDS).
Defining the variance of this MDS as

σ 2
N

def
≡ E

(T (N)∑
t=1

XNt

)2

=

T (N)∑
t=1

V(XNt ),

we can demonstrate asymptotic normality of its standardized sum – 1
σN

∑T (N)
t=1 XNt – by a central limit theorem for

martingale difference triangular arrays (see, for example, Hall and Heyde, 1980, Theorem 3.2 and Corollary 3.1, and White,
1984, Theorem 5.23 and Corollary 5.25). Specifically, if the Lyapunov condition

T (N)∑
E
(⏐⏐⏐⏐XNt

σ

⏐⏐⏐⏐r) → 0 (20)

t=1 N

15
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h

h

F

a
(

a

P

olds for some r > 2, and also the stability condition
T (N)∑
t=1

(
XNt

σN

)2
p

→ 1, (21)

olds then
T (N)∑
t=1

XNt

σN
=

1
σN

(T1 + T3)

D
→ N (0, 1). (22)

rom the calculations used in the MSE analysis of Section 3 we have that

σ 2
N = V(T1) + V(T3)

=
E[K 2

ij ]

n
+

4V(E[Kij|Ai])
N

+ O
(
1
n

)
=

Ω2(w)
nh

+
4Ω1(w)

N
+ O

(
1
n

)
+ O

(
h2

N

)
,

so, taking r = 3

1
σ 2
N

= O(N)

ssuming Ω1(w) > 0 and Nh ≥ C > 0. In the degenerate case, where V(E[Kij|Ai]) = Ω1(w) = 0, we will still have
σN )−2

= O(nh) = O(N) as long as the “knife-edge” h ∝ N−1 undersmoothing bandwidth sequence is chosen.
To verify the Lyapunov condition (20), note that

E

(⏐⏐⏐⏐1n (Kij − E[Kij|Ai, Aj])
⏐⏐⏐⏐3
)

≤ 8E

(⏐⏐⏐⏐Kij

n

⏐⏐⏐⏐3
)

=
8

n3h3

∫ ⏐⏐⏐⏐K (w − s
h

)⏐⏐⏐⏐3 fW (s)ds

=
8

n3h2

∫
|K (u)|3 fW (w − hu)ds

= O
(

1
n3h2

)
(23)

nd

E

(⏐⏐⏐⏐ 2N (E[Kij|Ai] − EKij
)⏐⏐⏐⏐3
)

≤
64
N3E

(⏐⏐E[Kij|Ai]
⏐⏐3)

=
64
N3E

(⏐⏐⏐⏐∫ K (u)fW |A(w − hu|Ai)du
⏐⏐⏐⏐3
)

= O
(

1
N3

)
(24)

utting things together we get that
T (N)∑
t=1

E
(
|XNt |

3)
= nE

(⏐⏐⏐⏐1n (Kij − E[Kij|Ai, Aj])
⏐⏐⏐⏐3
)

+ NE

(⏐⏐⏐⏐ 2N (E[Kij|Ai] − EKij
)⏐⏐⏐⏐3
)

= O
(

1
(nh)2

)
+ O

(
1
N2

)
= O

(
1
N2

)

16
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B

a

u
t

hen Nh ≥ C > 0 for all N . Therefore the Lyapunov condition (20) is satisfied for r = 3, since
T (N)∑
t=1

E

(⏐⏐⏐⏐XNt

σN

⏐⏐⏐⏐3
)

= O
(
N3/2)

· O
(

1
N2

)
= O

(
1

√
N

)
= o(1).

o verify the stability condition (21), we first rewrite that condition as

0 = p lim

(
1
σ 2
N

T (N)∑
t=1

(
X2
Nt − E[X2

Nt ]
))

≡ p lim
1

Nσ 2
N

(R1 + R2) , (25)

where

R1 ≡ N
N∑
i=1

[(
2
N
(E[Kij|Ai] − E[Kij])

)2

− E
(

2
N
(E[Kij|Ai] − E[Kij])

)2
]

+ N
∑
i<j

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2

− E

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2
⏐⏐⏐⏐⏐ Ai, Aj

]]
and

R2 = N
∑
i<j

[
E

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2
⏐⏐⏐⏐⏐ Ai, Aj

]
− E

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2
]]

.

ince 1/Nσ 2
N = O(1), the stability condition (21) will hold if R1 and R2 both converge to zero in probability.

By the independence restrictions on {Uij} and {Ai}, the (mean zero) summands in R1 are mutually uncorrelated, so

E (R1)
2

≡ N2
N∑
i=1

E

[(
2
N
(E[Kij|Ai] − E[Kij])

)2

− E
(

2
N
(E[Kij|Ai] − E[Kij])

)2
]2

+ N2
∑
i<j

E

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2

− E

[(
1
n
(Kij − E[Kij|Ai, Aj])

)2
⏐⏐⏐⏐⏐ Ai, Aj

]]2

= O

(
E
(
E[Kij|Ai]

)4
N

)
+ O

(
N2E

(
Kij
)4

n3

)
.

ut, using analogous arguments to (23) and (24),

E
(
E[Kij|Ai]

)4
= O (1)

nd

E
(
Kij
)4

= O
(

1
h3

)
,

so

E (R1)
2

= O
(

1
N

)
+ O

(
N2

(nh)3

)
= O

(
1
N

)
= o(1),

nder the bandwidth condition that 1/nh = O(1/N). So R1 converges in probability to zero. Moreover, R2 is proportional
o a (mean zero) second-order U-statistic,

R2 =
1
n

∑ N
n

[
E
[
(Kij − E[Kij|Ai, Aj])2

⏐⏐ Ai, Aj
]
− E

[
(Kij − E[Kij|Ai, Aj])2

]]
≡

1
n

∑
pN (Ai, Aj),
i<j i<j

17
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w

p

a

a

D

ith kernel having second moment

E
(
pN (Ai, Aj)

)2
= O

(
N2

n2 E
(
E[K 2

ij |Ai, Aj]
)2)

= O
(
N2

n2 ·
1
h2

)
= O(1)
= o(N),

again imposing the bandwidth restriction 1/nh = O(1/N). Thus by Lemma 3.1 of Powell et al. (1989), R2 converges in
robability to its (zero) expected value.
Since conditions (20) and (21) both hold, a central limit theorem for martingale difference triangular arrays implies

1
σN

(T1 + T3)
D

→ N (0, 1).

A final step is to used this result to obtain the asymptotic distribution of f̂W (w). Because
1
σN

= O
(√

N
)

,

we have that T2 and T4 are asymptotically negligible after standardization with σ−1
N (see Appendix B),

T2
σN

= Op

(√
N
n

)
= op(1)

nd
T4
σN

= O
(√

Nh2
)

= o(1),

so that
1
σN

(
f̂W (w) − fW (w)

)
=

1
σN

(T1 + T2 + T3 + T4)

D
→ N (0, 1).

When Nh4
→ 0 and Nh → ∞,

Nσ 2
N → 4Ω1(w)

nd
√
N
(
f̂W (w) − fW (w)

)
D

→ N (0, 4Ω1(w))

as long as V(E[Kij|Ai]) > 0.
Under “knife-edge” bandwidth sequences, such that Nh → C > 0, we have instead that

Nσ 2
N → 4Ω1(w) +

2
C

· Ω2(w)

and
√
N(f̂W (w) − fW (w))

D
→ N (0, 4Ω1(w) +

2
C

· Ω2(w)).

emonstration of consistency of Ω̂2 (w), Eq. (17) of the main text
To show result (17) of the main text, we start by showing asymptotic unbiasedness of Ω̃2(w) for Ω2(w). The expected

value of the summands in (16) equals

E
[
(K12)2

]
=

1
h

∫
[K (u)]2fW (w − hu)du

=
fW (w)

h
·

∫
[K (u)]2du + O(1)

≡
1
h
Ω2(w) + O(1)

= O
(
1
)

,

h

18
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f
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w

D

rom which asymptotic unbiasedness follows, since:

E
[
Ω̃2(w)

]
= h

[
1
h
Ω2(w) + O(1)

]
= Ω2(w) + o(1).

Following the same logic used to calculate the variance of f̂W (w), we calculate the variance of Ω̃2(w) as

V
(
Ω̃2(w)

)
= V

⎛⎝h
n

∑
i<j

K 2
ij

⎞⎠
=

(
h
n

)2∑
i<j

∑
k<l

C(K 2
ij , K

2
kl)

=
h2

n

[
V(K 2

12) + 2(N − 2) · C(K 2
12, K

2
13)
]
.

he first term in this expression depends upon

V(K 2
12) = E

[
K 4
12

]
− E

[
K 2
12

]2
=

fW (w)
h3 ·

∫
[K (u)]4du + O

(
1
h2

)
− E

[
K 2
12

]2
= O

(
1
h3

)
,

while the second involves

C(K 2
12, K

2
13) = E[K 2

12K
2
13] − E

[
K 2
12

]2
=

1
h2E

[∫
[K (u1)]2 fW |A(w − hu1|A1)du1

·

∫
[K (u2)]2 fW |A(w − hu2|A1)du2

]
− E

[
K 2
12

]2
= O

(
1
h2

)
.

utting things together we have that

V
(
Ω̃(w)

)
=

h2

n

[
V(K 2

12) + 2(N − 2) · C(K 2
12, K

2
13)
]

=
h2

n

[
O
(

1
h3

)
+ 2(N − 2) · O

(
1
h2

)]
= O

(
1
nh

)
+ O

(
1
N

)
= o(1),

hich, with convergence of the bias of Ω̃2(w) to zero, establishes (17) of the main text.

emonstration of consistency of Ω̂1(w), Eq. (18) of the main text
Since f̂W (w) is consistent if Nh4

→ 0 and Nh ≥ C > 0, consistency of Ω̂1(w) depends on the consistency of

Ê[K12K13] ≡

(
N
3

)−1 ∑
i<j<k

Sijk

for limN→∞ E[K12K13]. By the fact that Kij = Kji, the expected value of Ê[K12K13] is

E[Sijk] = E
[
1
3

(
KijKik + KijKjk + KikKjk

)]
= E [K12K13]

= E
[∫

[K (u1)] fW |A(w − hu1|A1)du1
19
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f
i

w

f

i
a

T

w

w

·

∫
[K (u2)] fW |A(w − hu2|A1)du2

]
= E

[
fW |A(w|A1)2

]
+ o(1)

rom the calculations in Section 3. To bound the variance of Ê[K12K13], we note that, although Ê[K12K13] is not a U-statistic,
t can be approximated by the third-order U-statistic

UN ≡

(
N
3

)−1 ∑
i<j<k

pN (Ai, Aj, Ak),

here the kernel pN (·) is

pN (Ai, Aj, Ak) = E[Sijk|Ai, Aj, Ak]

=
1
3

(
κijk + κjik + κkij

)
,

or

κijk ≡ E[KijKik|Ai, Aj, Ak]

=

∫ ∫
1
h2

[
K
(

w − s1
h

)]
·

[
K
(

w − s2
h

)]
· fW |AA(s1|Ai, Aj)fW |AA(s2|Ai, Ak)ds1ds2

=

∫
[K (u1)] fW |AA(w − hu1|Ai, Aj)du1

·

∫
[K (u2)] fW |AA(w − hu2|Ai, Ak)du2.

The difference between Ê[K12K13] and UN is

Ê[K12K13] − UN ≡

(
N
3

)−1 ∑
i<j<k

(
Sijk − E

[
Sijk|Ai, Aj, Ak

])
,

with all terms in this summation having mean zero. The second moment of this difference will involve the six-fold
summation over the (conditional) covariances between Sijk and Spqr for i < j < k and p < q < r and the corresponding
ndex sets {i, j, k} and {p, q, r} will have either zero, one, two, or three indices in common. But the independence of {Vij}

nd {Ai} across all i and j implies that the covariances in this summation with zero or one index in common will be zero.

here are
(

N
3

)
covariances (actually, variances) with all three indices in common and 3

(
N
2

)(
N − 2

2

)
covariances

ith two indices in common, so

E
[(
Ê[K12K13] − UN

)2]
≡

(
N
3

)−1

E[(S123 − E [S123|A1, A2, A3])2]

+

(
N
3

)−2

· 3
(

N
2

)(
N − 2

2

)
. · E[(S123 − E [S123|A1, A2, A3]) (S124 − E [S124|A1, A2, A3])]

= O
(
E[(S123)2]

N2

)
.

But

E[(S123)2] = E
[
1
3

(K12K13 + K12K23 + K13K23)

]2
=

1
9

(
3E
[
(K12K13)

2]
+ 6E[K 2

12K13K23]
)
,

here

E
[
(K12K13)

2]
= O

(
1
h2

)
,

20



B.S. Graham, F. Niu and J.L. Powell Journal of Econometrics xxx (xxxx) xxx

f
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rom previous calculations demonstrating consistency of Ω2 (w), and

E[K 2
12K13K23] = E

[∫ ∫ ∫
1
h4

[
K
(

w − s1
h

)]2
·

[
K
(

w − s2
h

)]
·

[
K
(

w − s2
h

)]
· fW |AA(s1|A1, A2)fW |AA(s2|A1, A3)fW |AA(s2|A1, A3)ds1ds2ds3

]
=

1
h
E
[∫

[K (u1)]2 fW |AA(w − hu1|A1, A2)du1

·

∫
K (u2) fW |AA(w − hu2|A1, A3)du2

]
·

∫
K (u2) fW |AA(w − hu2|A1, A3)du2

]
= O

(
1
h

)
.

These results imply that Ê[K12K13] − UN converges in mean-square to zero:

E
[(
Ê[K12K13] − UN

)2]
= O

(
1
N2

)
·

(
O
(

1
h2

)
+ O

(
1
h

))
= O

(
1

(Nh)2

)
= o(1).

Finally, we note that UN is a third-order “smoothed” U-statistic with kernel

pN (Ai, Aj, Ak) =
1
3

(
κijk + κjik + κkij

)
satisfying

E
[(

pN (Ai, Aj, Ak)
)2] (1) = O

y the assumed boundedness of K (u) and the conditional density fW |AA(w|Ai, Aj). Therefore, by Lemma A.3 of Ahn and
Powell (1993),

Un − E[UN ] = UN − E[Sijl]

= UN − E
[
fW |A(w|A1)

]2
+ o(1)

= op(1).

Finally, combining all the previous calculations, we get

Ω̂1(w) = Ê[K12K13] −

(
f̂W (w)

)2
=
(
Ê[K12K13] − UN

)
+ (UN − E

[
fW |A(w|A1)

]2) + E
[
fW |A(w|A1)

]2
−

((
f̂W (w)

)2
− (fW (w))2

)
− (fW (w))2

= E
[
fW |A(w|A1)

]2
− (fW (w))2 + op(1)

≡ Ω1(w) + op(1),

as claimed.
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