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Abstract

This paper introduces a simulation algorithm for evaluating the log-likelihood func-
tion of a large supermodular binary-action game. Covered examples include (certain
types of) peer effect, technology adoption, strategic network formation, and multi-
market entry games. More generally, the algorithm facilitates simulated maximum
likelihood (SML) estimation of games with large numbers of players, T , and/or many
binary actions per player, M (e.g., games with tens of thousands of strategic actions,
TM = O(104)). In such cases the likelihood of the observed pure strategy combination
is typically (i) very small and (ii) a TM -fold integral who region of integration has
a complicated geometry. Direct numerical integration, as well as accept-reject Monte
Carlo integration, are computationally impractical in such settings. In contrast, we
introduce a novel importance sampling algorithm which allows for accurate likelihood
simulation with modest numbers of simulation draws.
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Programme (Project No: CEX2020-001104-M) is gratefully acknowledged. Feedback from participants at
the CEMMAP/Toulouse conference on games (June 2021), the Oxford panel data conference (June 2022),
the CEMMAP/Vanderbilt conference on games (May 2023), the IMS/SNAB conference (June 2023), as well
as at seminars at UC Berkeley, UCL, Warwick, LSE, Oxford, and CEMFI is gratefully acknowledged. This
revision reflects specific feedback and questions from Bo Honoré, Áureo de Paula, Adam Rosen and Steve
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1 Introduction

Payoff interdependence, where the utility one agent gets from taking a particular action
varies with the actions chosen by others, characterizes many models of economic behavior.
The returns to adopting a networked technology increase in the fraction of other agents also
adopting (e.g., Goolsbee and Klenow, 2002; Ackerberg and Gowrisankaran, 2006). A teen’s
decision to smoke may be influenced by whether her friends also smoke (e.g., Gaviria and
Raphael, 2001; Krauth, 2007; Card and Giuliano, 2013). The returns to forming an R&D
partnership (or a supply chain relationship) between two firms might vary with the presence
or absence of such partnerships (relationships) across other firms. Firms’ decisions regarding
market entry typically depend on the entry decisions of competing firms (e.g., Bresna-
han and Reiss, 1991; Jia, 2008; Ciliberto and Tamer, 2009). In these settings, and many
others, it is convenient to view the set of actions taken by agents as an equilibrium of a game.

The econometric analysis of games poses a number of, now well understood, challenges
(see, for example, the surveys by de Paula (2013), Aradillas-Lopez (2020) and Molinari
(2020)). One set of issues stems from model incompleteness : econometric models of strategic
interaction often admit multiple Nash Equilibria (NE) for a given set of (unobserved)
preference shocks, U, and (unknown) payoff parameters, θ. Another set of issues involves
computational tractability. Even if the econometrician “completes” the model by specifying
which equilibrium is played when (or, more generally, writes down an equilibrium selection
model), parameter estimation in complete information games with more than a handful of
players and actions is often infeasible because evaluating the likelihood function involves a
high-dimensional integral with a complex region of integration.

In this paper we introduce an approach to payoff parameter estimation appropriate
for large supermodular complete information games with binary actions. By “large” we
mean games with hundreds of players, each of whom might take hundreds of of actions (i.e.,
games with tens of thousands of strategic variables). This class of games includes many
examples of interest to empirical researchers in economics and other fields.

Consider the peer effects in smoking example introduced above (with t = 1, . . . , T
players). A researcher might postulate that the payoff from smoking is increasing in the
fraction of one’s peers who smoke. The payoff may also vary with observed agent attributes,
Xt, and an unobserved normally (or logistically) distributed random utility “shock”, Ut.
Under complete information, any pure strategy Nash Equilibrium (NE) in this setting
will coincide with a fixed point of a system of T non-linear simultaneous equations. A
consequence of this simultaneous determination of smoking decisions is that an agent’s
unobserved taste for smoking – the Gaussian random utility shock in her payoff function
– will co-vary with the fraction of her peers that smoke. The naive probit regression fit
of own smoking behavior onto own attributes and the fraction of peers smoking does not
consistently recover agent preferences (e.g., Heckman, 1978).

If the researcher is willing to make an equilibrium selection assumption, we will as-
sume that the NE equilibrium with the fewest number of smokers is the one that prevails,
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then the likelihood is well-defined. Evaluating this likelihood, because it requires computing
a T -fold integral, is difficult. For modest T , say 20 or 30 agents, Krauth (2006) and Soetevent
and Kooreman (2007) have proposed simulation algorithms for computing this integral.
These algorithms make use of additional structure in this example beyond supermodularity.
Our approach handles this example as well as others, including those where, say, T = 500,
and each agent takes M > 1 actions. In such settings likelihood evaluation requires
computing a TM -fold integral with a very complex region of integration.

For researchers unfamiliar with the econometric complexities of game estimation, our
method is relatively straightforward to adopt. For example, a peer effects researcher can
simply introduce the fraction of one’s peers who smoke as a “covariate” in a probit-like
specification. In typical examples computation requires no more than a few minutes on
a good desktop computer. Unlike the naive probit fit described above, our method –
by appropriately handling the game-theoretic aspects of the model – delivers consistent
estimates of payoff function parameters under easy to communicate assumptions.

For economists with experience in game estimation, our approach makes large game
analysis feasible. For example, we show how our methods can be used to estimate payoff
functions in some models of (directed) network formation. In this example each of T
agents decides whether to direct a link (or not) to each of the T − 1 other agents in her
network. This results in a game with T (T − 1) = O(T 2) strategic variables. In an empirical
illustration we study the Nykatoke network dataset collected by De Weerdt (2004). This
network includes T = 116 households. Following De Weerdt (2004) we fit a model which
includes household specific sender and receive fixed effects, observed household attributes,
and a taste for supported links (see Jackson et al. (2012)). We are aware of no extant
methods, beyond those introduced below, that would allow a researcher to empirically study
a game with over 13, 000 strategic decision variables with a payoff function indexed by over
two hundred parameters.2

Computational limits have profoundly shaped the nature of empirical work involving
strategic interaction. While methods that fully embrace payoff interdependence and
strategic interaction commonly feature in empirical industrial organization, where many
settings of interest involve just a few agents (e.g., Ciliberto and Tamer, 2009), applications
involving many agents and/or actions are scarce. The failure to embrace the “strategic
nature” of discrete interactions in, for example, empirical peer effects analyses arguably
undermines the credibility of work in this area. Indeed, this was one theme of Manski
(1993). We emphasize peer effects and network formation examples below.

An important accomplishment of econometricians studying games has been the devel-
opment of methods of inference that do not require making a priori assumptions on
equilibrium selection (see Molinari (2020) for a comprehensive survey). We depart from
this norm and do maintain an equilibrium selection assumption in what follows (see also

2We defer on a discussion of whether fitting such a high dimensional model to the Nyakatoke network is
sensible to later in the paper.
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Bajari et al. (2010)). Our results are also restricted to supermodular games (loosely games
where the actions of others do not discourage – or weakly encourage – a player to take
an action). While they are restrictive relative to some treatments in prior work, these
assumptions allows us to focus on our main contribution: likelihood evaluation for very large
games. We discuss how to relax our equilibrium selection assumption at the close of the paper.

In a large game, evaluating the likelihood involves computing a high-dimensional in-
tegral over a complex region of integration. Our approach involves transforming this integral
into an expectation and using importance sampling to estimate it. The use of importance
sampling in the simulated maximum likelihood (SML) context goes back at least to
McFadden (1989) in the econometrics literature. Our particular problem requires computing
the sum of a (typically very large) set of “rectanglar” probabilities (i.e., hypercube volumes).
Similar to the GHK algorithm of Geweke (1989), Hajivassiliou and Ruud (1994), Keane
(1994) and Hajivassiliou et al. (1996), we generate random vectors within a target rectangle
by taking draws from a sequence of univariate truncated distributions. Unlike the GHK
simulator, the location of the rectangles whose volume we require is not known ex ante and
the points of truncation are determined sequentially via game-theoretic arguments. We also
compute individual rectangle probabilities “analytically” as opposed to using a weighted
frequency estimator. We elaborate on these and other differences below.

To be clear, our innovation is the introduction of a particular importance sampler:
scenario sampling. The likelihood of a game outcome, say Y = y = (y1, . . . yT )′, conditional
on a set of agent attributes, X = (X1, . . . XT )′, and parameter value, θ, coincides with
the probability that the set of random utility shocks, U = (U1, . . . UT )′, lie in a region
where Y = y is the selected NE. In a binary action game this region will be a collection
of high-dimensional hyper-cubes or “scenarios”. The total volume of these cubes equals
the likelihood. We estimate this volume by sampling scenarios and aggregating them in a
particular way.

In order to sample a scenario in the target set, we need to construct a vector of ran-
dom utility draws U such that Y = y is the selected NE with probability one. We
accomplish this task by drawing the agent-by-action random utility shocks sequentially. The
support of a given draw may depend on the realizations of prior draws. Such an approach
allows us to ensure that, in the end, U will be such that Y = y is the selected NE. Our
sequential sampler uses both the structure of the NE conditions as well as supermodularity.

The methods introduced below make estimation of a binary peer effects games with
hundreds of peer groups, each consisting dozens of agents, relatively routine. Similarly we
outline a set of tools that would allow a researcher to easily fit an economically interesting
structural model of strategic network formation to a graph consisting of hundreds of agents.
We are aware of no comparable estimation methods for these settings.3

3The closest competitor would be the simulated method-of-moments (SMM) approach outlined by Uetake
and Watanabe (2013) and used by Jia (2008), Nishida (2015) and Miyauchi (2016). This approach involves
comparing moments calculated from simulated game outcomes to those observed in the dataset in hand.
Depending on the application of interest, this approach can be of comparable computational cost to ours.
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The next section introduces a simple, and likely familiar, coordination game. We use
this game to introduce the main assumptions and features of our methods in an easy to
understand way.

Section 3 extends our basic analysis to binary peer effects games. The analysis of
such games is commonplace, but extant empirical work generally ignores, or side-steps,
game theoretic difficulties (but see Krauth (2006, 2007) and Soetevent and Kooreman
(2007) for important exceptions). Section 4 extends our results to a general class of discrete
supermodular games. Certain games of technology adoption and network formation, as we
explain, are members of this class.

In Section 5 we explore the numerical properties of our methods via a series of Monte Carlo
experiments. Finally, in Section 6, we use our methods to estimate the payoff parameters
in a game of network formation using the Nyakatoke network data collected by De Weerdt
(2004). Our empirical model of network formation is inspired by the “support” model of
favor exchange introduced by Jackson et al. (2012).

In what follows random variables are denoted by capital Roman letters, specific real-
izations by lower case Roman letters and their support by blackboard bold Roman letters.
That is Z, z and Z respectively denote a generic random draw of, a specific value of, and
the support of, Z. Random vectors and matrices are generally written in boldface (e.g., X).
We use Greek letters for parameters and a “0” subscript to denote their population values.
We sometimes omit this subscript when doing so causes no confusion.

2 A simple coordination game

We begin with a simple game of coordination between a pair of friends t = 1, 2. Each
friend/agent takes a binary action Yt ∈ {0, 1}. In Card and Giuliano (2013) Yt corresponds
to adolescent behaviors such as sexual intercourse, smoking, marijuana use or chronic
truancy. To keep things concrete (and light) we will consider two friends, Ademaro (t = 1)
and Brunhilde (t = 2), who are deciding whether to attend (Yt = 1) an electronic dance
music (EDM) concert or not (Yt = 0).

In other settings it can be more costly. For example, in the context of network formation models, it is well-
known that computing induced subgraph frequencies – the natural moments to use for SMM estimation in this
context – is computationally very costly (e.g., Bhattacharya and Bickel, 2015; Graham, 2020). If the target
parameter θ has more than a few components, then our method – as it allows for gradient-based optimization
– also has possible speed advantages. For some models we are also able to avoid repeated NE computation,
something that is required by the SMM-method (see Appendix D). Finally, our approach, being likelihood-
based, also offers efficiency advantages and facilitates Bayesian inference (for interested researchers).
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The payoff function equals

υ (yt, y−t;Xt, Ut, θ) = yt (X ′tβ + δy−t − Ut) (1)

for t = 1, 2. The payoff from not attending the concert is normalized to zero for both
agents. Observable differences in the taste for EDM are captured by variation in the linear
index X ′tβ. Unobserved heterogeneity is captured by the random utility shifter Ut. Note the
negative sign in front of Ut; hence it measures an agent’s unobserved distaste for EDM. The
notation y−t denotes the actions of players other than t.

As we assume that δ ≥ 0, the marginal utility associated with attending the concert,
Yt = 1, is greater when your friend also attends, Y−t = 1. This makes the game super-
modular. Ademaro’s utility from attending, Y1 = 1, when Brunhilde does not, Y2 = 0,
is

v (1, 0;X1, U1, θ) = X ′1β − U1.

Whereas if Brunhilde also attends his utility increases by δ to

v (1, 1;X1, U1, θ) = X ′1β + δ − U1.

Similarly the utility Brunhilde receives from attending the concert depends on whether Ade-
maro does not attend

v (1, 0;X2, U2, θ) = X ′2β − U2

or does attend
v (1, 1;X2, U2, θ) = X ′2β + δ − U2.

Scenarios

The systematic utility of taking the action, X ′tβ + δy−t, when evaluated at all possible com-
binations of peer play, y−t ∈ {0, 1}, defines a partition of the support of Ut into what we call
buckets (cf., Pelican and Graham, 2020); also see Figure 1. The bucket partition for the
support of Ut, for t = 1, 2, is

R = (−∞, X ′tβ] ∪ (X ′tβ,X
′
tβ + δ] ∪ (X ′tβ + δ,∞) .

The number of buckets will coincide with the number of possible peer play case distinctions,
L, plus 1. Specifically, the bucket partition (and its cardinality) can be found mechanically
by evaluating the utility function for all possible values of y−t.

In our EDM example L = 2, such that there are three buckets. If U1 falls into the
first bucket, then Ademaro’s taste shock is sufficiently low that it is strictly dominant for
him to attend the concert. That is he will go irrespective of what Brunhilde chooses to do.
If U1 instead falls into the second, or middle, bucket, then Ademaro is on the fence. His U1

realization is low enough that it will be optimal for him to attend the concert if Brunhilde
does as well, but he will not go to the concert without Brunhilde. Finally if U1 falls into the
third bucket, then it is a strictly dominant strategy for Ademaro to not go to the concert:
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his distaste for EDM is so high that even the presence of Brunhilde at his side is not enough
to entice him to go. The interpretation of Brunhilde’s bucket partition is analogous.

A pair of buckets, one from Ademaro and one from Brunhilde, defines what we call a
scenario. Let bjk denote the scenario where U1 falls into bucket j = 1, 2, 3 and U2 falls
into bucket k = 1, 2, 3. A scenario is a region of the support of U = (U1, U2)′ where the
fundamental strategic considerations of agents are constant. In other words, a scenario
defines a range of realizations for the utility/cost shocks U = (U1, U2)′ where, within them,
the fundamental nature of strategic play does not depend on the precise values of U1 or U2.

In Figure 1 scenario b22 = (X ′1β,X
′
1β + δ] × (X ′2β,X

′
2β + δ] corresponds to a pair of

random utility draws U = (U1, U2)′ where both Ademaro and Brunhilde are “on the fence”
about going to the concert. That is where it is a NE for them to both go or to both not
go. This conclusion does not depend on the precise values of U1 and U2, only that they are
somewhere within scenario b22.

In scenario b22 there are two NE, Y = (0, 0)′ and Y = (1, 1)′; the model is incom-
plete. In what follows we complete the model by assuming that when U ∈ b22 Ademaro
and Brunhilde do not go the concert (that is that Y = (0, 0)′ is the selected NE). This is a
special case of our assumption, stated formally below, that the equilibrium with the “least”
amount of action is the one that prevails if U falls in a scenario that supports multiple NE.

The set of all scenarios, denoted by B, partitions the support of U = (U1, U2)′ into a
set of nine rectangles:

R2 =b11 ∪ b12 ∪ b13 ∪ b21 ∪ b22 ∪ b23 ∪ b31 ∪ b32 ∪ b33.

See Figure 1 for an illustration (see also Bresnahan and Reiss, 1991; Tamer, 2003; de Paula,
2013)). For the time being we use double subscripts to index different scenarios. As a
second example of a scenario, when U1 lies in its first bucket, and likewise for U2, then
Ademaro and Brunhilde are in scenario b11 = (∞, X ′1β] × (∞, X ′2β] (corresponding to the
lower-left-hand rectangle in Figure 1). In this scenario Ademaro’s (Brunhilde’s) utility/cost
shock is so low that he (she) will attend the EDM concert irrespective of whether Brunhilde
(Ademaro) does. In this scenario both players’ strictly dominant strategy is to attend the
concert; Y = (1, 1)′ is the NE.

Likelihood

With an equilibrium selection assumption in hand, the probability of any game outcome
Y = y = (y1, y2)′ simply corresponds to the probability that U = (U1, U2) falls into one of
the scenarios in which Y = y is the (selected) NE. We denote the subset of scenarios where
Y = y is the NE by By. The set of all scenarios is denoted by B.
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Figure 1: Scenarios in an EDM concert attendance game

Notes:
(i) The figure in the top panel shows the partition of R2, the support of U = (U1, U2)′, into
nine scenarios. The three darker shaded scenarios are those where the NE is for Ademaro
and Brunhilde to both attend the concert. The middle scenario, labelled b22, corresponds to
the case where they are both “on the fence” about going. In this scenario both Y = (0, 0)′

and Y = (1, 1)′ are NE. We resolve this incompleteness by assuming that Y = (0, 0)′ is
the selected equilibrium. This corresponds to the NE with the least amount of action. The
likelihood of the event “Ademaro and Brunhilde both go to the concert” is given by the
probability mass attached to the three darker shaded regions
(ii) The bottom figure shows all sequences of U1 and U2 that “land” in one of the three
scenarios where the selected NE is Y = (1, 1)′. The left-most line in the figure depicts a
sequence where both U1 and U2 are low such that is strictly dominant for them both to go.
The second case corresponds to when Ademaro gets a low shock and Brunhilde a medium one.
In this case, although Brunhilde is on the fence, she nevertheless goes to the concert because
Ademaro goes (it is strictly dominant for him to do so). The last sequence corresponds to
Ademaro getting a medium shock and Brunhilde a low one.
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For example, the probability of observing Y = (1, 1)′ in a randomly sampled EDM
concert attendance game (from some well-defined population of EDM concert attendance
games), corresponds to the ex ante chance that a pair of random utility shocks falls into one
of the three darker shaded regions of Figure 1 (i.e., into scenarios b11, b12 or b22):

Pr
(
Y =

(
1
1

)∣∣X; θ
)

=
∑
b∈By

∫
u∈b

fU (u) du (2)

=

∫
u∈b11

fU (u) du +

∫
u∈b12

fU (u) du +

∫
u∈b21

fU (u) du

=F (X ′1β)F (X ′2β) + F (X ′1β) [F (X ′2β + δ)− F (X ′2β)]

+ [F (X ′1β + δ)− F (X ′1β)]F (X ′2β) ,

where we assume that U1 and U2 are iid with known CDF F (·) and PDF f (·) such that
fU (u) = f (u1) f (u2).

The three summands in (2) correspond to the probability mass attached to each of
the three colored scenarios in Figure 1. In this simple two player game, with two-dimensional
scenarios, direct likelihood evaluation involves no difficulties. Consequently maximum
likelihood estimation (MLE) is both straightforward and entirely standard.

However, consider the direct extension of the game to accommodate three players. In
such a game there would be four buckets and 43 = 64 scenarios (corresponding to cubes in
R3).4 In general, the number of scenarios for an observed game outcome will grow expo-
nentially with the number of players/strategic decisions.5 In this paper we are interested in
large games. Those with many players, T , each of whom, might take many binary actions,
M . When TM is in the hundreds or thousands, direct likelihood evaluation, and hence
MLE, is not feasible.

Our approach to (approximate) likelihood evaluation in many scenario games involves
simulation. The probability that a random draw of U = (U1, U2)′ falls in scenario b is simply

ζ (b; θ)
def
≡
∫
u∈b

fU (u) du,

where we suppress the role of covariates, X, in the notation. For example, the ex ante
probability that Ademaro and Brunhilde find themselves in scenario b22 is

ζ (b22; θ) =

∫ X′1β+δ

u1=X′1β

∫ X′2β+δ

u2=X′2β

f (u1) f (u2) du1du2

= [F (X ′1β + δ)− F (X ′1β)] [F (X ′2β + δ)− F (X ′2β)] .

Observe that ζ (b; θ) is a pmf for scenarios with support B. Let B denote a random draw
from the distribution of scenarios described by this pmf. We can re-write the likelihood of

4If agents are not exchangeable, for example peers are “best friends” and “second best friends”, then there
would be 5 buckets and 125 scenarios.

5In games with additional special structure, the number of scenarios may grow more slowly with T .
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the event Y =
(

1
1

)
, that is equation (2), as

Pr
(
Y = (1, 1)′

∣∣X; θ
)

=
∑
b∈By

ζ (b; θ) = Pr (B ∈ By) .

Conceptually, the probability to the right of the last equality above is straightforward to
simulate (practically, as we will see, there are difficulties). To see this note that every random
draw, U, from the population distribution of preference shocks, FU, will fall into one, and
only one, scenario. The event U ∈ b occurs with an ex ante probability of ζ (b; θ). It is
therefore easy to generate random draws from ζ (b; θ) because the population distribution of
B over B is induced by the one for the random utility shifters U (which are easy to simulate).
Hence we have the equality

Pr (B ∈ By) = Pr (y is the NE at U) ,

where the probability to the right can be computed by the accept/reject Monte Carlo (“dart-
board”) simulation estimate

P̂r (Y = y|X; θ) =
1

S

S∑
s=1

1
(
y is the NE at U(s)

)
with s = 1, . . . , S indexing independent random draws U(s) from FU.

Unfortunately, in large games, it is generally the case that the event y is a NE at U
occurs with very low probability. In large games the number of possible pure strategy
combinations, the cardinality of the set Y, is typically enormous (here Y is the set of all
2TM possible game outcomes). The population probability of observing any particular
game outcome or NE, Y = y, is therefore very small. Estimating small probabilities with
a computationally manageable number of simulation draws, S, by accept/reject frequency
methods is well-known to be infeasible (see, for example, Hajivassiliou and Ruud (1994) or
Au and Beck (2001)).

As in other related contexts our solution to this conundrum involves importance sam-
ple. We begin with the observation that evaluating the likelihood of a given game outcome
Y = y only requires integration over scenarios in the set By (i.e., scenarios where Y = y
is the selected NE). Those scenarios in the complement B \ By do not enter the likelihood
calculation. Although enumeration of the set By is infeasible in large games, we show how
it is possible to sample randomly from it.

Let λy (b; θ) be a function which assigns probabilities to the scenarios contained in
By. We will require that λy (b; θ) be strictly greater than zero for any b ∈ By and exactly
zero otherwise (i.e., for b ∈ B \ By). We also require that this function satisfy the adding
up condition

∑
b∈By

λy (b; θ) = 1. The function λy (b; θ) is a pmf for those scenarios where

Y = y is the NE. Let B̃ be a random scenario draw from the distribution with pmf λy (b; θ).
Later we show how to construct such a draw, but for now assume an appropriate method is
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in hand. Note that, by construction, Pr
(
B̃ ∈ By

)
= 1 and Pr

(
B̃ ∈ B \ By

)
= 0.

Let θ(0) be some (fixed) value for the parameter; we have that

Pr (Y = y|X; θ) =
∑
b∈By

ζ (b; θ)

=
∑
b∈By

ζ (b; θ)

λy (b; θ(0))
λy
(
b; θ(0)

)

=EB̃

 ζ
(
B̃; X, θ

)
λy

(
B̃; θ(0)

)
 ,

where B̃ denotes a random draw from λy
(
b; θ(0)

)
. We have written Pr (Y = y|X; θ) as

an expectation over scenarios in By (versus a summation over the much larger set B). An
importance sampling Monte Carlo estimate of this expectation is:

P̂r (Y = y|X; θ) =
1

S

S∑
s=1

ζ
(
B̃(s); θ

)
λy

(
B̃(s); θ(0)

) , (3)

where B̃(1) . . . B̃(S) are independent random draws from λy
(
b; θ(0)

)
.

This estimate, because the cardinality of By is finite, is consistent as S → ∞ (see
below). More importantly, because all of the summands in (3) are non-zero, this estimate
has the potential to provide precise estimates of Pr (Y = y|X; θ) for modest values of S,
particularly if the importance sampling weights, λy (b; θ), are close to uniform.

Operationalizing (3) requires a method for sampling scenarios in By; such a method
is the primary contribution of this paper. We first describe our approach in the context
of the simple two player coordination game introduced in this section and generalize it
to larger games in the sequel. Our approach is to draw U1 and U2 sequentially such that
U = (U1, U2)′ is in a scenario in By with probability one (i.e., U ∈ B̃, B̃ ∈ By w.p.1).

Consider simulating the probability of the event that both Ademaro and Brunhilde
go to the concert (i.e., that Y = y =

(
1
1

)
). For the purposes of illustration, we will first draw

Brunhilde’s preference shock, U2, followed by Ademaro’s, U1. In order to construct a draw
of U that falls into one of the three darker shaded regions of Figure 1, it is necessary, albeit
not sufficient, that U2 ≤ X ′2β + δ. In the first step of our procedure we therefore draw U2

from F truncated at X ′2β + δ.

Next we draw Ademaro’s preference shock, U1. Our approach to doing so depends
on the realized value of Brunhilde’s shock, U2. If Brunhilde’s shock falls between X ′2β and
X ′2β + δ, then she is “on the fence”. It will only be a NE for her to go if Ademaro does
as well. This means that Ademaro’s shock must fall below X ′1β, such that it is strictly
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dominant for him to go. So in this case we draw U1 from F truncated at X ′1β. This generates
(U1, U2)′ ∈ b12.

Alternatively, consider the case where Brunhilde’s step one shock was sufficiently low
such that it is strictly dominant for her to go to the concert; that is U2 ≤ X ′2β. In this
case we are free to draw Ademaro’s shock from the larger interval U1 ≤ X ′1β + δ. If
X ′1β ≤ U1 ≤ X ′1β + δ, then Ademaro is “on the fence”, but since Brunhilde is going no
matter what, they both will go. We have (U1, U2)′ ∈ b21. If, instead, U1 ≤ X ′1β, then we
have (U1, U2)′ ∈ b11 and they both go in that case as well.

Note that finding the appropriate region of support for Ademaro’s shock involves the
following “counterfactual” thought experiment. In step 1 we simulate Brunhilde’s shock
under the presumption that, in the end, Ademaro will also go to the concert (we are
computing the probability that they both go). In step 2, after drawing Brunhilde’s shock,
U2, we ask ourselves what her play would be if Ademaro’s taste shock instead was high
enough such that it would be strictly dominant for him not to go to the concert. Since the
game is supermodular, Ademaro not going (weakly) discourages Brunhilde from attending.
We compute the NE associated with this “counterfactual” scenario and use it to find the
appropriate upper threshold for Ademaro’s shock. If Brunhilde is sensitive to Ademaro’s
choice (i.e., she is “on the fence” or U2 is in her middle bucket), then we force Ademaro’s
shock to be lower. If Brunhilde is insensitive to Ademaro’s choice (i.e., it is strictly dominant
for her to go or U2 is in her first bucket), then we can allow Ademaro’s shock to range
higher.

The above procedure ensures that (U1, U2)′ falls in a scenario in By with probability
one. It also reaches every scenario in this set with positive probability. Formalizing the
calculations above yields the (importance) sampling probabilities

λy
(
b11; θ(0)

)
=

F
(
X ′1β

(0)
)

F (X ′1β
(0) + δ(0))

[
F
(
X ′2β

(0)
)

F (X ′2β
(0) + δ(0))

]
(4)

λy
(
b12; θ(0)

)
=
F
(
X ′2β

(0) + δ(0)
)
− F

(
X ′2β

(0)
)

F (X ′2β
(0) + δ(0))

(5)

λy
(
b21; θ(0)

)
=

[
F
(
X ′1β

(0) + δ(0)
)
− F

(
X ′1β

(0)
)

F (X ′1β
(0) + δ(0))

]
F
(
X ′2β

(0)
)

F (X ′2β
(0) + δ(0))

. (6)

It is a simple exercise to verify that:

λy
(
b11; θ(0)

)
+ λy

(
b12; θ(0)

)
+ λy

(
b21; θ(0)

)
= 1,

and hence that we have defined a proper probability distribution that places positive weight
on all scenarios in By. In contrast the unconditional population frequencies of these three
scenarios are (when θ0 = θ):

ζ (b11; θ) =F (X ′1β)F (X ′2β)

ζ (b12; θ) =F (X ′1β) [F (X ′2β + δ)− F (X ′2β)]

ζ (b21; θ) = [F (X ′1β + δ)− F (X ′1β)]F (X ′2β) .
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It is helpful for understanding what follows to observe that the scenario sampling probabilities
are inverse probability weighted versions of their population counterparts:

λy
(
b11; θ(0)

)
=

1

F (X ′1β
(0) + δ(0))F (X ′2β

(0) + δ(0))
ζ
(
b11; θ(0)

)
λy
(
b12; θ(0)

)
=

1

F (X ′1β
(0))F (X ′2β

(0) + δ(0))
ζ
(
b12; θ(0)

)
λy
(
b21; θ(0)

)
=

1

F (X ′1β
(0) + δ(0))F (X ′2β

(0))
ζ
(
b22; θ(0)

)
.

Observing that λ̂y
(
b; θ(0)

)
= 1

S

∑S
s=1 1

(
B̃(s) = b

)
consistently estimates λy

(
b; θ(0)

)
allows

us to express our importance sampling likelihood estimate as

P̂r (Y = y|X; θ) =
1

S

S∑
s=1

ζ
(
B̃; θ

)
λy

(
B̃; θ(0)

)
=
∑
b∈By

1

S

S∑
s=1

1
(
B̃(s) = b

) ζ (b; θ)

λy (b; θ(0))

=
∑
b∈By

{
λ̂y
(
b; θ(0)

)
λy (b; θ(0))

}
ζ (b; θ)

= Pr (Y = y|X; θ) +
∑
b∈By

{
λ̂y
(
b; θ(0)

)
− λy

(
b; θ(0)

)
λy (b; θ(0))

}
ζ (b; θ) ,

which indicates that likelihood estimate is unbiased for any fixed S and consistent as S →∞
as long as λy

(
b; θ(0)

)
> 0 for all b ∈ By. While P̂r (Y = y|X; θ) converges in mean square

to Pr (Y = y|X; θ) at rate 1
S

, accuracy in actual applications will depend on the cardinality
of By as well as the features of λy

(
b; θ(0)

)
and ζ (b; θ).

Simulated maximum likelihood (SML) estimation

Let (X1,Y1), . . . , (XN ,YN) be a random sample of games. The simulated log likelihood
equals:

lN (θ) =
N∑
i=1

ln P̂r (Yi|Xi; θ) , (7)

with each of the summands in (7) constructed via simulation as described above. When the
researcher has access to a large number of independent games (such that the summands in
(7) are independent of one another), it is straightforward to characterize the large sample
properties of our SML estimator. Under regularity conditions it will be consistent and
asymptotically normal as N →∞, S →∞. See Hajivassiliou and Ruud (1994).

We detail additional features of our SML estimator below, but point out now that
one advantage (besides the critical one of feasibility!) of importance sampling versus
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crude frequency simulation is that our criterion function is differentiable. This means that
maximization of (7) by gradient-based methods is possible; in turn allowing the dimension
of θ to be large. The Hessian can also be computed numerically, making inference – when
valid – straightforward.

3 Peer effect games

In this section we extend our simple coordination game analysis to T -player single-action
peer effect and technology adoption games. In these games the payoff from taking action is
weakly-increasing in the number of people in an agent’s reference, or peer, group who take
action (e.g., Manski, 1993). This is an important class of games. Manski (1993), Brock and
Durlauf (2001b) and Bramoullé et al. (2009) study the econometrics of these games when
actions are continuous and agents’ best response functions are linear (see Bramoullé et al.
(2020) for a survey). The binary-action case is less well understood, but see Krauth (2006)
and Soetevent and Kooreman (2007) for important analyses. In Section 4 we show how to
extend our analysis to a class of T -player, M -binary-action supermodular games.

3.1 Likelihood

Consider a simple binary-action peer effects game. There are T agents, each of who decide
whether to take an action, Yt = 1, or not, Yt = 0. Agents are connected via a set of
undirected relationships. Let G be the T × T row-normalized adjacency matrix recording
this link structure. Let Gt denote the tth row of this matrix such that Gty equals the mean
action of agent t’s peers. The payoff from action for agent t is

υ (yt,y−t;Xt, Ut, θ) = yt (X ′tβ + Gtyδ − Ut) . (8)

This set-up approximates many peer effects and technology adoption games. We assume
that δ ≥ 0, so that peer action weakly encourages own action.

The set of pure strategy NE in this game correspond to the solutions of the system
of T nonlinear equations

Yt = 1 (X ′tβ + GtYδ ≥ Ut) , t = 1, . . . , T. (9)

This system may have multiple solutions. In this paper we will assume that the minimal
equilibrium, the one with the fewest agents taking action, is the one that prevails. This
equilibrium can be found by substituting the zero vector Y = 0T into the right-hand-side of
(9) and iterating to a fixed point. By Tarski’s Fixed Point Theorem this iterative process
stops at the minimal equilibrium (Milgrom and Roberts, 1990).
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This equilibrium selection assumption may not be plausible in some applications, it is
perhaps most natural for “opt in” games. For example in adolescent peer effects and technol-
ogy adoption games it is common for agents to start in the non-action state and then choose
whether to act/adopt. Our results are easily modified to accommodate applications where
the equilibrium with the most action is the one chosen (the so-called maximal equilibrium).
The maximal equilibrium can be found by fixed point iteration starting at Y = 1T (i.e., at the
one vector). This equilibrium selection assumption might be appropriate for “opt out” games.

As in the two-player coordination game described above, we can use the systematic
component of agents’ utility functions (8) to partition the support of Ut into buckets. If
player t has Jt friends (corresponding to the number of non-zero elements in the tth row of
the row-normalized adjacency matrix, G), then her bucket partition will be

(−∞, X ′tβ] ∪
(
X ′tβ,X

′
tβ +

δ

Jt

]
∪
(
X ′tβ +

δ

Jt
, X ′tβ +

2δ

Jt

]
∪ · · · ∪

(
X ′tβ +

Jtδ

Jt
,∞
)
.

The number of buckets partitioning the support of Ut equals the cardinality of the set{
st (y−t) : y−t ∈ {0, 1}T

}
plus 1 where st (y−t) = GtY. In this example we have Lt = Jt + 1

for a total of Lt+1 = Jt+2 buckets. If Ut falls in the first bucket, then it is strictly dominant
for player t to take action regardless of what her peers do. If it falls in the second bucket,
it is optimal to take action if at least one out of her Jt peers do and so on. The buckets
define ranges of realized values of Ut where it is optimal to take action given that different
numbers of peers also take action (the right-most bucket defines the set of Ut realizations
where it optimal to not take action across all possible levels of peer action).

Scenarios in this game correspond to T -dimensional hyper-cubes in RT . Consider the
scenario where all of the Ut taste shocks fall into their second buckets. In this scenario it is
optimal for all players to take action if at least one of their peers do.

Associated with a scenario, b, is a set of T upper and lower bucket boundaries. We
will denote the bucket boundaries in scenario b for agent t by b̄t and bt.

6 Using this notation
we can write the ex ante probability that U = (U1, U2, . . . , UT )′ falls into scenario b as

Pr (U ∈ b) = ζ (b; θ) =
T∏
t=1

[
F
(
b̄t
)
− F (bt)

]
.

We have suppressed the dependence of the bucket boundaries on Xt and θ in the notation.

To construct an estimate of the likelihood of the event Y = y we, in addition to the
expression for ζ (b; θ) given above, require a method for randomly drawing a scenario, say
B̃, from the set By with an ex ante probability, λy

(
b; θ(0)

)
, that is computable. With these

ingredients, we can estimate the likelihood – as noted earlier – by the simulated analog of

6Note that bt = −∞ if agent t’s bucket in scenario b is the first (left-most) one and b̄t = ∞ if it is the
last (right-most) one.
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the expectation:

Pr (Y = y|X; θ) = EB̃

 ζ
(
B̃; X, θ

)
λy

(
B̃; θ(0)

)
 .

See (3) above. We randomly draw the scenario B̃ by sequentially drawing the random
preference shocks U1, U2, . . . , UT such that, in the end, U ∈ B̃ and B̃ ∈ By with probability
one.

3.2 Scenario Sampling

In this section we describe a procedure for constructing a random draw, B̃, from the set By.
We use the notation B̃ to emphasize that this draw is not from the population distribution
of scenarios, with support, B and pmf ζ (b; θ), but instead drawn from a distribution with
support on the smaller set By. Indeed, the cardinality of By will typically be much smaller
than that of B.

Recall that the population distribution of scenarios is induced by the population dis-
tribution of the random utility shocks U = (U1, U2, . . . UT )′ (as well as the structure of
preferences). We similarly sample scenarios from By by constructing draws of the random
utility shocks, U. The innovation is to do this in a way such that U ∈ B̃ and B̃ ∈ By with
probability one.

Key to our approach is the drawing of the taste shocks sequentially instead of independently.
Specifically we allow the region from which Ut is drawn from to depend on the realizations
of earlier draws, Us in the sequence (where s < t). By carefully taking into account the
constraints imposed by the target pure strategy combination y and the definition of a NE, we
can ensure that the final sequence of draws U fulfills U ∈ B̃ and B̃ ∈ By with probability one.

The goal is to construct a draw of U = (U1, U2, . . . UT )′ such that, at the current pa-
rameter value θ, the selected NE is y. Associated with such a draw is a scenario B̃ ∈ By

which can be used to simulate the likelihood function using equation (3) above.

Let y denote the NE for which we wish to compute the likelihood Pr (Y = y|X; θ).
Without loss of generality we will assume that the first T − s agents do not take the action
(i.e., that yt = 0 for t = 1, . . . , T − s) while the last s agents do take the action (i.e., that
yt = 1 for t = T − s+ 1, . . . , T ).

We will first draw random utility shocks for the T − s agents who do not take action
in NE y. For these agents it must be the case that their utility shock Ut is high enough such
that it optimal for them not to take action given the play of others y−t. From (8) we have
that it must be the case that, for t = 1, . . . , T − s,

X ′tβ + Gtyδ < Ut (10)
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or, equivalently, that Ut ∈ (X ′tβ + Gtyδ,∞) for t = 1, . . . , T − s. Shocks of this magnitude
are high enough to ensure that these agents’ do not wish to take action, which would be a
deviation from their behavior in NE y. See (9) above.

We next consider agents the s who do take action in the target equilibrium, y. Find-
ing the appropriate range restrictions for Ut for the yt = 1 agents is more challenging.
Since Gtyδ ≥ 0 (by supermodularity), it must be the case that, if Ut ∈ (−∞, x′tβ] for
t = T − s + 1, . . . , T , then it will be optimal for these agents to choose yt = 1 (as desired).
Indeed, draws this low ensure that it will be strictly dominant for these agents to take the
action. However it is also possible that higher draws of Ut are sufficiently low enough to
ensure that these agents will still choose yt = 1.

An example helps clarify the issues involved. Consider a setting where G corresponds to a
complete graph (i.e., everyone is connected to everyone else in the group as in the canonical
“linear-in-means” model studied by Manski (1993), Bramoullé et al. (2009) and others).
Our goal continues to be the construction of a U = (U1, U2, . . . UT )′ sequence where Y = y
is the NE. We again begin by drawing the T − s preference shocks for the yt = 0 agents from
the interval Ut ∈

(
X ′tβ + sδ

T−1
,∞
)
. This range restriction is sufficient to ensure that these

T − s agents will not want to deviate from y.

Next we need to draw utility shocks for the s agents who we do want to take action.
Assume, for the purposes of exposition, that the first s− 1 of these draws, UT−s+1, . . . , UT−1,
are so low that it is strictly dominant for these players to choose yt = 1. In this case, for the
sth action-taking agent, we only require a random utility shock lower than X ′tβ + (s−1)δ

T−1
. For

this last shock we can draw UT ∈
(
−∞, X ′tβ + (s−1)δ

T−1

)
.

We now consider a slight variation of this example: we assume that the only first
s − 2 draws for the action-taking agents, UT−s+1, . . . , UT−2, are low enough for it to be
strictly dominant for them to choose yt = 1. Next consider the appropriate range constraint
for the (s− 1)th action-taking agent’s random utility draw.

In taking this draw we know that the previous s − 2 agents will take the action for
sure, we will also proceed as if the draw for the sth agent will be low enough for her to want

to choose yt = 1 as well. In this case any draw of Ut ∈
(
−∞, X ′tβ + (s−1)δ

T−1

)
will suffice for

the (s − 1)th action-taking agent to choose yt = 1 as desired. Say our draw of Ut for agent
t = T − 1 (the (s− 1)th agent choosing yt = 1) is relatively high, specifically in the interval(
X ′tβ + (s−2)δ

T−1
, X ′tβ + (s−1)δ

T−1

)
.

In this situation the appropriate way to draw Ut for agent T , the sth and final action-taking

agent, is delicate. Say we draw Ut ∈
(
X ′tβ + (s−2)δ

T−1
, X ′tβ + (s−1)δ

T−1

)
. In this case both agents

T − 1 and T would be willing to choose yt = 1 as long as the other did, but they won’t
choose yt = 1 if the other chooses yt = 0. Since we assume that the NE with the least
amount of action prevails in the presence of multiplicity, such a draw would not result in a
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Algorithm 1 Scenario Sampler (peer effects case)

Inputs: z = (x,y), θ (i.e., a target pure strategy combination and a utility/payoff function)

1. Initialize U = (U1, . . . , UT )′ =

{
−∞ if yt = 1

+∞ otherwise

2. For t = 1, . . . , T

(a) If yt = 0, then sample Ut ∈ (X ′tβ + Gtyδ,∞) from the conditional density
f(u)

1−F (X′tβ+Gtyδ)

def
≡ ωtf (u).

3. For t = 1, . . . , T

(a) If yt = 1, then

i. determine ht using Threshold(z, θ, U, t);

ii. sample Ut ∈ (−∞, ht] from the conditional density f(u)
F (ht)

def
≡ ωtf (u) .

(b) Find B̃ ∈ By such that U ∈ B̃.

Outputs: The T × 1 weight vector ω = (ω1, . . . , ωT )′, the vector of taste shocks U and a
(random) scenario B̃ ∈ By.

scenario in our target set of By.

To stay on track we require that UT lies below X ′Tβ + (s−2)δ
T−1

. In this case agent T
will take the action (because s − 2 agents will choose yt = 1 for sure). Since agent T takes
the action, it will also be optimal for agent T − 1, who had a somewhat higher random
utility draw, to do so as well. This agent is on the fence, but since T chooses yt = 1 she does
so as well. We thus have U ∈ B̃ and B̃ ∈ By as needed.

In general there will be an agent specific threshold, ht, between X ′tβ and X ′tβ + Gtyδ that
will be sufficient to keep our algorithm on track. The theshold ht is such that if Ut ≤ ht,
then it is possible to construct subsequent draws Ut+1, . . . , UT , such that, in the end, U ∈ B̃
and B̃ ∈ By, as desired. If however Ut > ht, then this will not be possible. Algorithm 2
shows how to find this threshold. Given these thresholds it is relatively straightforward to
sample B̃ ∈ By.

Algorithm 1 details how U1, . . . , UT are sequentially drawn from a series of truncated
distributions. Let U denote a draw produced by Algorithm 1. The (ex ante) population
probability of the event U ∈ b (for b ∈ By) is

λy (b; θ) =
T∏
t=1

ωt
[
F
(
b̄t
)
− F (bt)

]
, (11)
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Algorithm 2 Threshold Finder (peer effects case)

Inputs: z = (X,y), θ, U, t

1. For t′ = 1, . . . , T

(a) if yt′ = 0, then set Ũt′ = Ut′ ;

(b) if yt′ = 1, then

i. if t′ < t, then set Ũt′ = Ut′ (ht′ already found);

ii. if t′ > t, then set Ũt′ = X ′tβ − 1 (ht′ not already found).

2. Ũt = X ′tβ + Gtyδ + 1 (ensures that player t will not want to choose Ỹt = 1 in Step 3
below).

3. Find the minimal NE, Ỹ, associated with Ũ. Set ht = X ′tβ + GtỸδ.

Output: The threshold, ht.

where the weights ωt are as given in the statement of Algorithm 1 and b̄t and bt are the
bucket boundaries for agent t defined earlier. Note that λy (b; θ) is a “re-weighted” version
of ζ (b; θ). We also have that λy (b; θ) = 0 for all b ∈ B \ By.

A key step of Algorithm 1 is its calling of our Threshold Finder (i.e., Algorithm 2). By
construction the Threshold Finder is first called after all draws of Ut for yt = 0 agents
have already been made (see Step 2 of Algorithm 1). Hence, at the start of each call of
Algorithm 2, U consists of draws of Ut for all yt = 0 cases, those draws of Ut for the yt = 1
cases for which the thresholds ht have already been determined, and the initialization values
for any remaining elements.

Let t index the player for which ht is currently being determined and t′ other play-
ers. In Step 1.a.ii. of the Threshold Finder we provisionally set the random taste shock
for all t′ where yt′ = 1 and ht′ has not yet been determined, such that in the minimal
equilibrium computed in Step 3 we will have ỹt′ = 1 with probability one. For all other
players, except the current one, the relevant random taste shocks have already been chosen.

In Step 2 of Algorithm 2 we then (provisionally) set the current player’s random util-
ity draw, Ũt, to a level such that the strictly dominant strategy will be for player t to not
to take action even when all other player actions are as specified in the target NE y. In the
target NE y we have yt = 1 (Algorithm 2 is only called in such cases), but here we wish to
induce a different NE Ỹ � y with Ỹt = 0. By forcing player t to not take action it may be
that we also induce some other players whose thresholds ht′ have already been chosen to also
not take the action as well, such that Ỹt′ = 0 (even though yt′ = 1 in the target NE). This
provides useful information since it helps us understand how important player t’s decision
to take the action is for sustaining the target NE.

Observe that, by monotonicity of the utility function of the underlying game we have
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that Ỹ � y: the equilibrium simulated in Algorithm 2 is less dense than the target one. In
Step 3 of Algorithm 2 we set ht = X ′tβ + GtỸδ. This is exactly the threshold we need. We
know that if Ut ≤ ht it (i) will be optimal for player t to take action given the actions of
her peers, Ỹ−t, in the sparser equilibrium and (ii) because player t will take the action, no
other players will want to deviate from the target NE, y to Ỹ. Hence agents will choose y
as desired. However if Ut > ht, player t will choose not to take the action and other players
will also not take further actions beyond Ỹ. For such a draw of U, y will not be the NE.

These observations are formalized in the following Theorem.

Theorem 1. (Valid Sampler - Peer Effects Game) Consider the complete informa-
tion T -player peer effects game defined above. For any minimal NE, y ∈ YT , Algorithm 1,
in conjunction with the Threshold Finder (Algorithm 2) generates a random U ∈ b such
that (i) b ∈ By with probability one and (ii) λy (b; θ) > 0 for all b ∈ By.

Proof. See Appendix A.

A key feature of Theorem 2 is the guarantee not just that U ∈ b with b ∈ By, but that all
scenarios in By are visited with positive probability. Theorem 2 is sufficient for consistency
of (3) for the true likelihood as S →∞.

3.3 The coordination game

In this section we formally walk through our scenario sampling algorithm using the simple
two-player coordination game introduced in the previous section. Our goal is to construct
a simulation estimate of the ex ante probability that Y =

(
1
1

)
for a given θ. There are

three scenarios which lead to the observed outcome; these are the darker shaded lower
left-hand-side rectangles in Figure 1. We now illustrate how the Scenario Sampler,
Algorithm 1, samples each of them with positive probability. For the purposes of illustration,
and to contrast with our informal analysis in the prior section, will will draw Ademaro’s
preference shock U1 first, followed by Brunhilde’s, U2.

Sampling scenario b11: Strictly dominant for both Ademaro and Brunhilde
to attend

Step 1 is initialization. Step 2 is not relevant for the Y =
(

1
1

)
NE.

In the first execution of Step 3, the Threshold Finder proceeds under the pre-
sumption that in the end Brunhilde will want to choose Y2 = 1 (see Step 1, (b) ii. in
Threshold Finder). It therefore finds a threshold for Ademaro of h1 = X ′1β

(0) + δ(0). The
Scenario Sampler consequently draws U1 from (−∞, h1] (see Step 3, (a) ii. in Scenario
Sampler). In order eventually land in b11, it must be the case that our U1 draw is lower
then X ′1β

(0).

In the second execution of Step 3, the Threshold Finder knows that Ademaro
will choose yt = 1 (Step 1, (b) i. in Threshold Finder) and therefore finds a threshold of
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h2 = X ′2β
(0) + δ(0) for Brunhilde. The U2 is drawn from (−∞, h2]. In order to land in b11 it

must be the case that this draw is below X ′2β
(0).

By using the truncated probability distributions given in the statement of the al-
gorithm, we find that b11 is drawn with an ex ante probability λy

(
b21; θ(0)

)
=

F(X′1β(0))
F(X′1β(0)+δ(0))

[
F(X′2β(0))

F(X′2β(0)+δ(0))

]
.

Sampling scenario b21: Ademaro is “on the fence”

Step 1 is initialization. Step 2 is not relevant for the Y =
(

1
1

)
NE.

In the first execution of Step 3, the Threshold Finder again proceeds under the
presumption that in the end Brunhilde will want to choose Y2 = 1 (see Step 1, (b) ii. in
Threshold Finder). It therefore again finds a threshold for Ademaro of h1 = X ′1β

(0) +δ(0).
As above, the Scenario Sampler draws U1 from (−∞, h1] (see Step 3, (a) ii. in Scenario
Sampler). However in this instance we want to end up in scenario b21. Therefore it must
be the case that our U1 draw is in the interval

(
X ′1β

(0), X ′1β
(0) + δ(0)

)
.

In the second execution of Step 3, the Threshold finder knows that Ademaro will
only want to take the action if Brunhilde takes the action (Step 1, (b) i. in Threshold
Finder). Therefore it finds a lower threshold for Brunhilde of h2 = X ′2β

(0). The U2

preference shock is drawn from (−∞, h2]. In order to land in b21 it must be the case that
this draw is lower than X ′2β

(0) (which it is by construction).

b21 is drawn with an ex ante probability of λy
(
b21; θ(0)

)
=

F(X′1β(0)+δ(0))−F(X′1β(0))
F(X′1β(0)+δ(0))

.

Sampling scenario b12: Brunhilde is “on the fence”

This scenario is similar to the b11 scenario. It differs only in terms of the real-
ized draw of U2. The ex ante probability of drawing this scenario is λy

(
b12; θ(0)

)
=

F(X′1β(0))
F(X′1β(0)+δ(0))

[
F(X′2β(0)+δ(0))−F(X′2β(0))

F(X′2β(0)+δ(0))

]
.

Observe how in all three cases, the Threshold Finder finds the appropriate threshold for
Brunhilde by using information contained in Ademaro’s U1 draw. Specifically the algorithm
determines whether Ademaro is sensitive to Brunhilde’s play, if he is it chooses a lower
threshold for Brunhilde’ shock to ensure that, in the end, both of them will want to go to
the concert.

In the example above we construct U ∈ b with b ∈ By by drawing Ademaro’s pref-
erence shock first, followed by Brunhilde’s. In our discussion of the same example in the
prior section we reversed this order. By comparing the scenario probabilities above with
those calculated earlier (see Equation (4)) we can see that the order in which we draw the
shocks for the yt = 1 agents matters.
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We speculate that there is an optimal ordering of the yt = 1 agents. That is an or-
dering which will result in importance sample weights that estimate the likelihood with the
smallest amount of simulation error for a fixed number of simulation draws. Our conjecture
is that the optimal ordering involves a sorting of agents by the linear indices X ′tβ

(0). We
leave a complete analysis of this question to future work.

3.4 Technical comments

In this section we briefly discuss a few additional feature of our algorithm. Additional details
are provided in the appendices.

Section 4 below introduces a class of binary-action, complete information, supermod-
ular games to which an extended version of our scenario sampler can be applied. In these
games T players each take M binary actions. For most games in this class the number of
scenarios grows exponentially with TM . At the same time the probability of observing
any particular NE generally shrinks exponentially. This makes explicit enumeration of
scenarios, required for “direct” MLE, infeasible. This feature of our problem also makes
crude frequency-based – “dartboard” – Monte Carlo methods completely impractical outside
of toy examples.

In contrast, our approach allows a researcher to randomly sample a scenario from the
target set By in polynomial time. This is the main reason why our approach makes SML
estimation of games with several thousands strategic decision possible. However there are
a few other properties of our procedure which make scenario-based estimation even more
applicable to larger games.

Differentiability
An advantage of importance sampling, relative to crude frequency-based Monte Carlo,
is that the former results in a criterion function that is differentiable in θ, while the
latter does not (see McFadden (1989); Ackerberg (2009). Inspection of Equation (3) re-
veals that is locally differentiable in θ. The details of this claim are spelled out in Appendix C.

When agents’ preferences are indexed by many parameters, it is very helpful to have
the derivative of the log-likelihood function with respect to θ available. Non-gradient based
optimization approaches do not scale well to high-dimensional settings. In our empirical
illustration we fit a network formation model with over 200 parameters by SML, quasi-
Newton assisted, estimation (the model includes household-specific degree heterogeneity
parameters as in Graham (2017, 2020)). Fitting a model of this size would not be practical
without gradient-based optimization methods.

Scenario Recycling
Maximizing the log-likelihood requires it to be evaluated at many different values of
θ. The most expensive component of log-likelihood evaluation involves computation
of the Nash Equilibrium (NE). This observation applies not just to our scenario-based
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approach, but to other likelihood-based methods of game estimation (e.g., Bajari et al.,
2010). In Appendix D we outline a procedure, “scenario recycling”, which economizes on
repeated NE calculations. Our procedure is related to the methods of Ackerberg (2009)
as applied to games by Bajari et al. (2010). As with these approaches, scenario recycling
works only if there is exactly one strategic parameter to estimate. This applies to the
peer effect example of this section and the network formation example we develop empirically.

Independence
In many applications a researcher will observe the NEs of several, independent, games. For
example a researcher may observe the smoking behavior of adolescents across many different
secondary schools. Such applications have a number of computational and statistical
advantages.

In these applications the sample log likelihood is the sum of the log-likelihoods asso-
ciated with each observed game. These log-likelihood components can be estimated
separately via their own simulated scenario samples and then aggregated.

Independence across games also allows for the application of textbook SML large
sample theory (e.g., Newey and McFadden, 1994; Hajivassiliou and Ruud, 1994). Our
approach can also be used to analyze a single large game, but such applications raise novel
statistical issues which we do not address here. Some additional discussion on this point is
provided when we discuss our empirical illustration.

4 Supermodular games

In this section show how to adapt Algorithm’s 1 and 2 to a broader class of binary-action
supermodular games. In this class of games each of T -players decides whether to take, or not
to take, each of M (non mutually exclusive) binary actions. In the peer effects game analyzed
in the previous section M = 1; but in many games agents may make multiple strategic deci-
sions. In a game of directed network formation, for example, each player decides whether to
direct a link (or not) to each of the T −1 other players in the network (such that M = T −1).

In order to present positive results, we need to restrict the structure of payoffs to en-
sure that the resulting game is supermodular. Let Ytm ∈ {0, 1} denotes the mth action
of player t. Denote agent t’s full M × 1 action vector by Yt = (Yt1, . . . , YtM)′. Let
Yt,−m = (Yt1, . . . , Ytm−1, Ytm+1, . . . , YtM)′ denote player t’s M − 1 actions other than Ytm.

Similarly let Y−t =
(
Y′1, . . . ,Y

′
t−1,Y

′
t+1, . . . ,Y

′
T

)′
be the (T − 1)M × 1 vector of actions

taken by agents other than t, henceforth called her peers. Let U and X be matrices
consisting of all taste shocks and covariates. A player’s realized utility depends on their

own actions, yt ∈ Yt

def
≡ {0, 1}M , as well as the actions of their peers, y−t. For pure strategy
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profile y ∈ Y
def
≡ {0, 1}TM the utility function of player t, υt : Y→ R is

υt (y; X,U, θ) =υ (yt,y−t;X t,Ut, θ) (12)

def
≡

M∑
m=1

ytm
(
X ′tmβm + sm (yt,−m,y−t)

′ δm − Utm
)
,

with θ = (β′1, δ
′
1, . . . , β

′
M , δ

′
M)′ and where sm (yt,−m,y−t) is a given vector-valued func-

tion of own actions (other than the mth one) and peers’ actions. This function may
vary with m = 1, . . . ,M . It could also depend on exogenous agent-by-action covari-
ates, but we suppress this in the notation. The setup also allows for player-by-action
specific covariates, Xtm, to influence payoffs. Players choose actions to maximize their
utility given the actions of their peers under complete information (i.e., agents best respond).

The effect of an increase in Utm is to decrease player t’s marginal benefit of taking
action m; it can be thought of as a distaste or cost-of-action shock. This term generates
unobserved agent-specific heterogeneity in the marginal utilities attached to taking the
M actions. This M -vector endows our model with the classic random utility structure
pioneered by McFadden (1974). We assume that the elements of Ut = (Ut1, . . . , UtM)′ are
independently and identically distributed (iid) with known cumulative distribution function
(CDF) F (·) and probability density function (PDF) f (·). Independence is also maintained
across agents and games (the t and i subscripts). We briefly discuss different distributional
and dependence assumptions on Ut in the conclusion.

The sm (yt,−m,y−t) term allows for player t’s marginal utility from action m to de-
pend on what other actions she chooses to take. For example the payoff from smoking may
vary with whether she also decides to drink. This term also captures how the choices of
other players in the game alter the utility player t attaches to action m; so called endogenous
effects in the parlance of Manski (1993).7

To ensure the resulting game is supermodular, we require that sm (yt,−m,y−t) is monotone
increasing in both its arguments and that δm ≥ 0. This restriction ensures that (i) own
actions are (weak) complements with one another and that (ii) own and peer actions are
weakly complementary as well.

The first claim follows from the restrictions that (i) the elements of sm (yt,−m,y−t)
are weakly increasing in yt,−m and that (ii) the elements of δm are non-negative for
m = 1, . . . ,M . Observe that (Yt,�) is a complete lattice and, further, that for all yt,y

′
t ∈ Yt

we have that

υ (yt ∨ y′t,y−t;xt,ut, θ) +υ (yt ∧ y′t,y−t;xt,ut, θ) (13)

≥υ (yt,y−t;xt,ut, θ) + υ (y′t,y−t;xt,ut, θ) ,

7Exogenous or contextual effects can be added to (12) simply by defining xtm to include, for example,
averages of the attributes of other players in game i. Here our focus is on the implications of strategic
interaction for estimation and inference, consequently we abstract from exogenous effects.
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and hence that υ (yt,y−t;xt,ut, θ) is a supermodular function of yt (Topkis, 1998).8 No two
actions a player can take are substitutes for one another.

The second restriction on sm (yt,−m,y−t) also has a nice economic interpretation. It
implies that agent t’s utility from taking binary actions m = 1, . . . ,M is weakly increasing
in y−t. Noting that (Y \ Yt,�) is also a complete lattice, we have that, for all y′t � yt and
y′−t � y−t, the increasing differences property

υ
(
y′t,y

′
−t;xt,ut, θ

)
− υ

(
yt,y

′
−t;xt,ut, θ

)
≥ υ

(
yt,y

′
−t;xt,ut, θ

)
− υ (yt,y−t;xt,ut, θ) . (14)

Own and peer actions are complementary.

An implication of restrictions (13) and (14) is that the game is supermodular in the
sense of Milgrom and Roberts (1990). They show that in supermodular games there exist
two extremal NE in pure strategies – minimal and maximal – and that all rationalizable
strategy profiles are bounded by these two extremal NE. The monotonicity of the utility
function in y further allows us to find the minimal NE using Tarski’s (1955) Theorem. Our
algorithm exploits these implications of supermodularity.

Our assumptions about sampling and the data generating process are collected in
Assumption 1.

Assumption 1. (Supermodular Game) (i) The payoff function (12) satisfies restrictions
(13) and (14); (ii) the elements of Ut = (Ut1, . . . , UtM)′ are iid with known CDF F (·); (iii)
agents choose actions under complete information (i.e., they know the structure of preferences
as well as X and U) and (iv) play the minimal NE when multiplicity is present.

Examples

Although Assumption 1 is a real restriction, it is sufficiently flexible to accommodate many
complete information games of interest to economists. To give some sense of the range of
possible applications of our methods, it is helpful to consider a few examples. Our first
example is closely related to the peer effects model analyzed in the previous section.

Example 1. (Network externalities). A leading application of the methods outlined
is this paper is to the study technology adoption in the presence of network externalities
(e.g., Ackerberg and Gowrisankaran, 2006). Consider a single binary decision of whether to
adopt Yt = 1 an innovation or not Yt = 0. For example, Goolsbee and Klenow (2002) study
network externalities in home computer adoption. If the marginal benefits of adoption are
increasing in the aggregate number of adopters, then utility (12) might take the form

υ (yt,y−t;xt, ut, θ) = yt

(
x′tβ +

[∑
s 6=t

ys

]
δ − ut

)
(15)

8The notation yt ∨ y′
t denotes the join or least upper bound operation, yt ∧ y′

t the meet or greatest lower
bound operation.
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where, since M = 1, we set Ut1 = Ut to simplify the notation; similarly s1 (y−t) = s (y−t) =∑
s 6=t ys (i.e., when M = 1 we drop the m subscript on the “strategic” utility term).

Our second example nests a model analyzed by Krauth (2006) and Soetevent and Koore-
man (2007), itself a complete information version of the seminal binary action peer effects
model introduced by Brock and Durlauf (2001a,b).

Example 2. (Multi-Action Peer Effects) Let Yt1 and Yt2 be a pair of binary actions
plausibly subject to peer influence. For example smoking and drinking among adolescents
(e.g., Gaviria and Raphael, 2001). Here utility might take the form

υ (yt,y−t;xt,ut, θ) =yt1

(
x′tβ1 + yt2δ11 +

[
1

T − 1

∑
s 6=t

ys1

]
δ12 +

[
1

T − 1

∑
s 6=t

ys2

]
δ13 − ut1

)

+ yt2

(
x′tβ2 + yt1δ21 +

[
1

T − 1

∑
s6=t

ys1

]
δ22 +

[
1

T − 1

∑
s 6=t

ys2

]
δ23 − ut2

)
.

Here s1 (yt,−1,y−t) =
(
yt2,

1
T−1

∑
s 6=t ys1,

1
T−1

∑
s 6=t ys2

)′
and s2 (yt,−2,y−t) =(

yt1,
1

T−1

∑
s 6=t ys1,

1
T−1

∑
s 6=t ys2

)′
.

In this model smoking and drinking are complementary. Similarly the utility of smoking
and drinking is increasing in the fraction of peers that also engage in these behaviors. Our
approach to estimation scales especially well in this example, easily accommodating games
with, for example, hundreds of players (such that 2MT , the number of possible pure strategy
combinations, is very large).

A third example, related to the first two, corresponds to the setting considered by Sun-
dararajan (2008), Banerjee et al. (2013), Kim et al. (2015) and others.

Example 3. (Adoption games on networks). In this setting the influence of individuals
on each other is mediated by an exogenously given network of relationships. As in Example
1, agents decide whether to adopt or not, but now the utility of adoption for agent t only
varies with the adoption behavior of those agents to which she is directly connected. Let
D = [Dst]

T
s,t=1 be a T × T binary adjacency matrix describing the structure of links among

the T players in a game. Utility equals

υ (yt,y−t;xt, ut, θ) = yt

(
x′tβ +

[∑
s 6=t

Dtsys

]
δ − ut

)

such that s (y−t) =
∑

s6=tDtsys. Researchers have been especiallly interested in how the
form of D – the network – shapes equilibrium adoption decisions. Related is the question
of how to allocate adoption subsidies, here conceptualized as external manipulations of Xt,
to maximize aggregate take-up. Both Banerjee et al. (2013) and Kim et al. (2015) present
evidence suggesting that (scarce) subsidies should be allocated toward more central players
in a network.
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Our fourth example is adapted from Miyauchi (2016), who pointed out the connection
between the theory of supermodular games and some models of strategic network formation.9

Example 4. (Strategic network formation). In this example each of the t = 1, . . . , T
agents in a game decides whether to direct a link, Yts = 1, or not, Yts = 0, to each of the T−1
other agents s 6= t, s = 1, . . . , T also in the game (e.g., Bala and Goyal, 2000; de Paula et al.,
2018; Sheng, 2020; Pelican and Graham, 2020). Here M – the number of strategic decisions
each players makes – equals T − 1 – the number peers to which an agent may direct links.
A pure strategy combination consists of a total of T (T − 1) binary decisions for a total of
2T (T−1) possible directed network configurations. In this example it is convenient to slightly
re-define Y to be the T × T digraph adjacency matrix [Yts]

T
s,t=1 with Ytt ≡ 0 for t = 1, . . . , T

by construction (cf., Graham, 2020). Even in modestly-sized networks, consisting of, say,
T ≈ 100 agents, this is a very large problem relative to extant applications of game theory
in econometrics (a total of 29900 possible pure strategy combinations!). If agents prefer, say,
reciprocation and transivity in links (e.g., De Weerdt, 2004), then utility for agent t in a
network formation game might take the form

υ (yt,y−t;xt,ut, θ) =
∑
s 6=t

yts

(
x′tsβ + ystδ1 +

[
T∑
r=1

ytryrs

]′
δ2 − uts

)
,

with δ1 and δ2 respectively measuring the strength of agents’ taste for reciprocity and transi-
tivity in links and xts consisting of a vector of sending (t subscript) and receiving (s subscript)
agent-specific regressors as well as possibly dyadic regressors (e.g., distance between t and
s). Of special interest is the case where only a single network is observed (i.e., “the fixed-N ,
large-T , large-M case”). Of course we might also be interested in settings where agents may
form multiple types of links. Such an extension would incorporate features of Example 2.

Note that in this example s (yt,−s,y−t) =
(
yst,
∑T

r=1 ytryrs

)′
and δ = (δ1, δ2)′, both of which

do not vary with s = 1, . . . , t − 1, t + 1, . . . , T (an appropriate restriction when agents are
conditionally exchangeable given covariates).

Our final example, due to Jia (2008) and Nishida (2015), is well-known in the field of
empirical industrial organization.

Example 5. (Strategic multi-market entry). Let m = 1, . . . ,M index markets that
two rival firms t = 1, 2 choose to either enter, Ytm = 1, or not, Ytm = 0. Let zml denote the
distance between markets m and l and, as in Jia (2008), assume that the benefits of entry
into market m are increasing in the number of nearby markets l in which firm t also operates,
specifically in 1

zml

∑
l 6=m ytl. We also assume that the benefits of market entry are lower if

one’s rival also enters the market:

υ (yt,y−t;xt,ut, θ) =
M∑
m=1

ytm

(
x′tmβt + δt1

[∑
l 6=m ytl

zml

]
+ δt2y−tm − utm

)
. (16)

Utility (16) captures firms’ preferences to operate in spatially clustered markets in order to,
for example, economize on the number of distribution centers they need to operate (δt1 ≥ 0).

9Miyauchi (2016) considered undirected networks, while our analysis formally pertains to directed ones.

26



It also captures the fact that firms prefer markets with less competition (δt2 ≤ 0). Of special
interest is the case where only a single game is observed, but the two firms potentially
operate/compete in many markets (i.e., “the fixed-N , fixed-T , large-M case”). Although
utility (16) is not weakly increasing in y−t, if we redefine the strategy space for, say player 2,
such that Y2m = 0 corresponds to entry into market m and Y2m = 1 to non-entry, then the
non-decreasing property is restored with δ11 ≥ 0, δ12 ≥ 0 and δ21 ≤ 0 and δ22 ≤ 0. See Jia
(2008) for details. Note this example departs slightly from the general framework of (12).
Here, in keeping with the fixed-T , large-M framing, the utility parameters are agent-specific
(e.g., Walmart and Kmart may have different profit functions), not action-specific (as is
appropriate for the case where M is fixed, but agents are exchangeable, which characterizes
the hitherto introduced examples).

Scenario estimation for supermodular games

Our scenario sampling algorithm is easily adapted to handle the more complicated games of
this section. Denote the systematic component of player t’s action m utility by

gtm (y, xtm)
def
≡ x′tmβm + sm (yt,−m,y−t)

′ δm. (17)

Minimal adjustment to the peer effect algorithm outlined earlier gives our general Scenario
sampler.

Algorithm 3 Scenario sampler (general case)

Inputs: z = (x,y), θ (i.e., a target pure strategy combination and a utility/payoff function).

1. Initialize U = (U1, . . . ,UT )′ =

{
−∞ if yt = 1

+∞ otherwise
.

2. For t = 1, . . . , T and m = 1, . . . ,M

(a) If ytm = 0, then sample Utm ∈ (gtm (y, xtm) ,∞) from the conditional density
f(u)

1−F (gtm(y,xtm))

def
≡ ωtf (u).

3. For t = 1, . . . , T and m = 1, . . . ,M

(a) If ytm = 1, then

i. determine htm using Threshold(z, θ, U, t, m);

ii. sample Utm ∈ (−∞, htm] from the conditional density f(u)
F (htm)

def
≡ ωtmf (u) .

(b) Find b ∈ By such that U ∈ b.

Outputs: The TM × 1 weight vector ω = (ω1, . . . , ωTM)′, the vector of taste shocks U and
a (random) scenario b ∈ By.

As in the peer effects special case, a key component of our general Scenario sampler
is a Threshold finder subroutine.
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Algorithm 4 Threshold finder (general case)

Inputs: z = (X,y), θ(0), U, t, m.

1. For t′ = 1, . . . , T and m′ = 1, . . . ,M

(a) if yt′m′ = 0, then set Ũt′m′ = Ut′m′ ;

(b) if yt′m′ = 1, then

i. if h̄t′m′ already found, then set Ũt′m′ = Ut′m′ ;

ii. otherwise, set Ũt′m′ = gtm (0, xtm)− 1 (i.e., h̄t′m′ not already found).

2. Set Ũtm = gtm (y, xtm) + 1 (this ensures that player t will not want to choose Ỹtm = 1
in Step 3 below).

3. Find the minimal NE, ỹ, associated with Ũ. Set htm = gtm (ỹ, xtm).

Output: The threshold, htm.

The correctness of the general algorithm follows from a simple extension of Theorem 1.

Theorem 2. (Valid Sampler - General Case) Consider the complete information
T -player, M-action supermodular game defined above. For any minimal NE, y ∈ YTM ,
Algorithm 3, in conjunction with the Threshold Finder (Algorithm 4) generates a random
U ∈ b such that (i) b ∈ By with probability one and (ii) λy (b; θ) > 0 for all b ∈ By.

Proof. See Appendix A.

The rest of estimation proceeds as described earlier. Although we note that scenario
recycling is not straightforward when the strategic interaction parameter, δ, is vector-valued
(as discussed further in the Appendix D). This does result in an increase in computation
time; although since finding the minimal equilibrium is straightforward in supermodular
games estimation remains feasible, even for very large games.

5 Monte Carlo Experiment

In this section we summarize the results of a small number of Monte Carlo experiments.
The purpose of the experiments is to verify our main theoretical claims as well as to get
some sense of the small sample performance of our methods in an empirical setting of interest.

The Monte Carlo design uses a random geometric graph to construct a friendship
network with T × T adjacency matrix D (see Graham, 2016). The friendship network
is exogenous and determines each agent’s set of peers. Specifically agents are scattered
uniformly on a plane. The network is generated by randomly linking agents which are close
to each other on this plane. The purpose is to approximate a real world friendship network
where only close agents have the possibility to meet each other.
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The utility for agent t has the form

υ (yt,y−t;xt, ut, θ) = yt

(
x′tβ +

[∑
s 6=t

Dtsys

]
δ − ut

)
.

In the Monte Carlo design we use four covariates. Two of these covariates are binary
(sampled for each player from a Bernoulli distribution). The remaining two covariates
are continuously-valued (sampled from a uniform distribution). The preference shocks
U = (U1, . . . , UT )′ are iid standard normal random variables. Full details of the data
generating process are available in Appendix B. For each simulation we (i) draw the vector of
utility shocks U and (ii) find the minimal equilibrium, Y, by fixed point iteration. Finally,
we estimate β and δ based on the resulting observed Y vector by simulated maximum
likelihood (SML) using our Scenario sampler. The regressor matrix X is simulated once
and then held fixed across Monte Carlo replications.

We consider two variants of the above setup. In the first estimation is based upon
the availability of many independent medium sized games. In this setting the asymptotic
sampling distribution of the SMLE of θ follows from standard large sample results (see
Hajivassiliou and Ruud (1994); Newey and McFadden (1994)). This is a “fixed T , fixed M ,
large N” setting.

We also consider the properties of our SML estimator when there is only a single
large game. This is a “large T , fixed M , fixed N” setting. Large sample theory for
SML estimates is not available in this setting. Developing such theory raises a number of
interesting questions that are well beyond the scope of this paper (see Menzel (2016) for
some relevant ideas and also discussion in the next section).

The case of many medium sized games is encountered if the researcher has, for ex-
ample, friendship data across many independent school classrooms (e.g., van Rijsewijk et al.,
2018). The case a single game arises when, for example, the researcher observes a network
of relationships in a single village (e.g., De Weerdt, 2004). For the many medium sized
games case we simulate datasets with 2, 000 agents belonging to one of N = 100 separate
friendship networks (each containing T = 20 agents). For the single large game case we
consider datsets with T = 500 agents in N = 1 friendship network.

Monte Carlo results for both cases are displayed in, respectively, Panels A and B of
Table 1. We report the average and standard deviation of the SML estimate of δ across
1000 simulated datasets for each of the two designs. The true value of δ is 0.20, which
is close to the average of the SMLEs. Also reported is the size of a likelihood ratio test
for H0 : δ = 0.20 and the coverage of a Wald-based 95 percent confidence interval for δ.
The standard errors used to construct this interval are based upon the simulated Hessian
matrix (calculated by differentiating the simulated log-likelihood function). We each de-
sign we report results when the likelihood is estimate by drawing S = 1, 10 and 100 scenarios.
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Table 1: Monte Carlo Experiment Results

Panel A Panel B
Many Games Single Game

(N = 100) (N = 1)
Number of players per game, T 20 20 20 500 500 500
Number of scenario draws, S 1 10 100 1 10 100
Number Monte Carlo replications 500 500 500 500 500 500

Mean of δ̂ 0.208 0.200 0.197 0.206 0.199 0.197

Std. Dev. of δ̂ 0.020 0.030 0.033 0.030 0.043 0.051
Likelihood Ratio test size (H0 : δ = δ0, α = 0.05) 0.072 0.050 0.034 0.060 0.040 0.072
Confidence interval coverage (1− α = 0.95) 0.942 0.952 0.936 0.958 0.896 0.872

Notes: Data generating process is as described in the main text and the Appendix B.
Coverage is for the usual Wald-statistic-based confidence interval. Standard errors for these
intervals were constructed from the Hessian matrices associated with simulated log-likelihood
functions.

In both designs the SMLE of δ is approximately unbiased. This holds even when we
use only a small number of scenario draws. However the normal approximation, as judged
by the size of the LR test and the coverage of the confidence interval, only appears to be
accurate for the many games design (consistent with extant large sample theory). This is
confirmed by the histograms of the SMLEs for the two designs (S = 100 cases) shown in
Figure 2. The single game distribution in the right panel is notably skewed. Understanding
the sampling properties of SMLEs in single large game settings (the “large T , fixed M , fixed
N” case) is an interesting topic for future research.

Figure 2 also shows the sampling distribution of naive probit estimates of δ. Such
estimates, since they fail to take into account the simultaneous determination of Y1, . . . , YT ,
are inconsistent (and clearly so).

We close this section by observing that our Panel B Monte Carlo experiments are
based upon a single game with 500 actions. We are aware of no other maximum likelihood
based estimator for games of this size.
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Figure 2: The MC distribution of the Scenario Estimator

Notes: The figure plots a histogram estimate of the distribution of δ̂ across the 500 Monte
Carlo many game and single game experiments. The sampling distributions for the estimates
based on S = 100 scenario draws are the ones shown. The red vertical line marks the
population value of δ. The blue shaded histogram gives the distribution of our scenario-based
SMLE estimates, the blue vertical line marks the average of these estimates. The green
shaded histogram gives the distribution of the naive probit regression estimates of δ. The
probit estimates are inconsistent due to simultaneity. The green vertical line marks the
average of the probit estimates.
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6 Risk-sharing in Nyakatoke

Joachim De Weerdt, in connection with dissertation research, collected risk-sharing links
across households in Nyakatoke, a village in the Kagera Region of Tanzania (adjacent to
Lake Victoria). Specifically, he asked all adult individuals in the village who they could
rely upon for help and, from their responses, constructed a network of directed links across
households.10 De Weerdt (2004) undertook a pioneering empirical analysis of these data.
He modelled link formation using dyadic logistic regression methods.11 The analysis focused
on the role of kinhsip, clan, religion, wealth and economic activity overlap in driving link
formation.

De Weerdt (2004) also posited that households exhibited a taste for transitivity in
links. To capture this feature of preferences he included the number of friends in common
as an additional regressor in his analyses (see Table 6 of his paper). If the payoff from
t directing a link to s varies with the presence or absence of other links in the network
(e.g., with whether t and s have many friends r in common), then, as described earlier,
the observed configuration of links will correspond to the outcome of a strategic network
formation game. In such a setting, since links are simultaneously determined (and the model
is also incomplete), dyadic logistic regression analysis will not deliver consistent estimates of
household preferences over networks.

In this Section we re-visit De Weerdt’s (2004) analysis. Instead of positing a taste
for transitivity we, inspired by Jackson et al. (2012), study whether households have a taste
for “supported links”. Agent r supports a link from t to s (and also s to t) if both arcs (r, t)
and (r, s) are present. Jackson et al. (2012) posit that agents value support, since agent r
can monitor and referee any relationship between t and s. Formally we posit that household
t’s payoff from network y is:

υ (yt,y−t;xt,ut, θ) =
∑
s 6=t

yts

(
x′tsβ + δ

[
T∑
r=1

yrtyrs

]
+ As +Bt − uts

)
, (18)

with θ = (β′, δ,A′,B′)′ for A = (A1, . . . , AT )′ and B = (B1, . . . , BT )′. Here X is a matrix of
dyadic regressors. These regressors are extensively described by De Weerdt (2004) and more
succinctly defined in Table 2 below. The {At}Tt=1 and {Bs}Ts=1 terms are household-specific
parameters allowing for out- and in-degree heterogeneity. They are also sometimes called
ego- and alter-effects or sender- and receiver-effects.

Such effects accommodate the reality that some households may generically get greater utility,
ceterius paribus, from directing a link, while other households may be a priori more attractive
link targets. The

∑T
r=1 yrtyrs term counts the number of agents r available to support arc

(t, s). The parameter δ indexes how much the payoff from directing arc (t, s) increases with

10Comola and Fafchamps (2014) discuss the Nyakatoke dataset in detail and our interpretation of the link
data follows their suggested one.

11See Graham (2017) and Graham (2022) for formal analyses of the statistical properties of these estimators
in single network settings.
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support. This is the “strategic” parameter in our model and the one of primary interest here.

Before presenting our estimation results we note that our model is non-standard. We
have complete data for T = 116 households (out of a total of 119 households). Hence Y
includes a total of T (T − 1) = 13, 340 strategic decisions! Preferences over this graph are
indexed by dim (θ) = dim (β) + 1 + 2T = 243 parameters. Inference is based entirely on a
single large game (a “fixed” N , “large” T , “large” M = T − 1 analysis). The log-likelihood
function does not consist of a sum of independent components, the dimension of θ grows
linearly with T and, finally, any large T analysis would have to consider the properties of
the network formation game as T grows large (see Menzel, 2016)).

Inspired by Mele and Zhu (2023) we conjecture that a triangular array set up, with δ
replaced by δT = δ

T
, would generate a sequence of games with a non-trivial limit as T →∞.

Perhaps this set-up, paired with ideas in Fernández-Val and Weidner (2016) and Graham
(2017), could be used to show consistency and asymptotic normality of β̂ and δ̂ (likely with
a bias in the limit distribution). These are just conjectures; formal analysis is likely to be
non-trivial and raises issues well beyond the scope of this paper. Here will simply report
simulated maximum likelihood estimates (SMLEs) of θ. The statistical properties of these
SMLEs are, as yet, unknown.

Table 2 reports SMLEs of θ. The simulated log-likelihood is constructed as described
in Sections 2 and 3 above. We use a quasi-Newton optimization algorithm, differenti-
ating the simulated log-likelihood as detailed in Appendix C. Standard errors, reported
in parentheses, are constructed from the diagonal elements of the inverse Hessian matrix
(constructed by double differentiation of the simulated log-likelihood). These standard errors
have unknown statistical properties; here they simply provide measures of the curvature of
our criterion function in the neighborhood of its maximum.

The first column of Table 2 reports a naive dyadic probit regression fit. These re-
sults mirror those in De Weerdt (2004), who used a logit specification. The naive probit
results suggest that familial connections and spatial proximity are strong drivers of link
formation. There is also some evidence of religion- and wealth-based homophily. The extent
of overlap in economic activities does not predict links (notwithstanding that the scope for in-
surance might be greater across households engaging in different types of economic activities).

Columns 2 to 4 of Table 2 report our SMLEs based on varying numbers of scenario
draws (S = 1, 10, 100). Our point estimates are remarkably insensitive to the num-
ber of scenarios drawn, although theoretical considerations privilege those estimates
based on a larger number of scenario draws. Our discussion of the substantive aspects of
the SMLEs will be based on those reported in Column 4 (which uses S = 100 scenario draws).

We do not fully understand why our results are relatively stable even for small S, we
conjecture this may reflect the following factors. First, inspection of (3) indicates that, for a
fixed S, our importance sampler provides an unbiased estimate of the likelihood function for
the network (the log-likelihood function will not be unbiased). Note also that the summands
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in (3) are analytically calculated T (T − 1)-dimensional “rectangular” probabilities (see
Appendix C). The analytical calculation of these rectangle volumes is, we believe, a distinct
feature of our algorithm relative to other familiar importance samplers in econometrics (e.g.,
the GHK algorithm).

Consider the case where estimation is based on a single scenario draw (i.e., S = 1),
denote this draw by B̃(1). This scenario is the hypercube formed by T (T − 1) = 13, 340

bucket edges, each with upper and lower bounds of, respectively, ˜̄b
(1)
ts and b̃

(1)

ts . These
bucket boundaries are determined by the draws of Uts generated in Steps 2 and 3 of the
Scenario Sampler. While these draws are not fully independent of one another – the
truncation point for each Uts draw (corresponding to a link present in the graph) depends on
the values of prior draws of Ut′s′ – there is nevertheless a fair bit of independence across them.

When S = 1 the criterion function we maximize equals

ln P̂r (Y = y|X; θ) =
T∑
t=1

∑
s6=t

ln
[
F
(

˜̄b
(1)
ts

)
− F

(
b̃

(1)

ts

)]
− lnλy

(
B̃(1); θ(0)

)
.

The first term is a summation of T (T − 1) random variables. While these random variables
are not fully independent, neither are they fully dependent. Suitable normalized, it is
plausible that this term has a limit as T grows large. The second term in this expression,
which is an output of the Scenario Sampler, doesn’t vary with θ. These considerations
suggest that our simulated log-likelihood criterion may be a reasonable estimate even when
S = 1. This merits further study.

In looking at the point estimates, appropriately taking into account the game-theoretic
details of the model results in a support coefficient about 10 percent smaller than what is
produced by the naive probit fit. In contrast the coefficients on the homophily measures,
on balance, increase in absolute magnitude by about 10 percent once we properly treat
the network as a NE. Overall supported links do appear to generate greater utility. Links
between blood relatives, geographic neighbors, co-religionists and households with similar
wealth levels also generate greater utility.

What we wish to emphasize here is that maximum likelihood analysis, fully account-
ing for the complications arising from strategic interaction, is possible in a game involving
over ten thousand strategic decisions and several hundred utility parameters.
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Table 2: Nyakatoke SML Estimates (With Sender- and Receiver Effects)

“Regressor” Probit SMLE SMLE SMLE
(S = 1) (S = 10) (S = 100)

Support 0.183 0.166 0.127 0.146

(
∑T

r=1 yrtyrs) (0.031) (0.015) (0.014) (0.031)

Parents, children 1.485 1.511 1.509 1.510)
and siblings (0.116) (0.113) (0.113) (0.117)

Nephews, nieces, uncles, aunts, 0.919 0.897 0.921 0.929)
cousins, grandparents, grandchildren (0.128) (0.127) (0.127) (0.128)

Other blood relative 0.697 0.691 0.714 0.702
(0.102) (0.100) (0.100) (0.101)

Distance (km) -1.375 -1.396 -1.420 -1.394
(0.100) (0.099) (0.099) (0.101)

Same religion (Catholic, 0.169 0.156 0.168 0.172
lutheran or Muslim) (0.049) (0.048) (0.048) (0.048)

Same clan 0.008 0.018 0.006 0.011
(0.079) (0.078) (0.078) (0.079)

Both t and s household heads -0.097 -0.082 -0.100 -0.097
have completed primary school (0.156) (0.155) (0.156) (0.156)

Activity overlap (0 to 1) -0.012 -0.013 -0.011 -0.011
(0.015) (0.014) (0.014) (0.015)

Absolute household head age -0.082 -0.080 -0.084 -0.081
difference (decades) (0.021) (0.021) (0.021) (0.021)

Absolute wealth difference -0.025 -0.024 -0.026 -0.025
(000,000s of Tanzanian Shillings) (0.008) (0.008) (0.008) (0.008)

Notes: Household-specific ego- (At) and alter- (Bs) effects included in all models (point
estimates not reported). Reported standard errors constructed using the inverse of the diag-
onal elements of the Hessian of the simulated log-likelihood function. For the naive probit
estimates the standard errors ignore all dependence across dyads and other forms of model
mis-specification.
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7 Conclusion

In this paper we have presented an algorithm which facilitates simulated maximum like-
lihood estimation of very large binary-action supermodular games. The introduction of
methods allowing for the empirical analysis of datasets recording the outcomes of strategic
interaction among multiple agents is one of the major accomplishments of twenty-first
century econometrics. It is our hope that the methods proposed in this paper can be used
to empirically study games much larger than is currently common.

Much work remains to be done. While we have shown how to compute the (simu-
lated) MLE for some very large games, several of our examples are non-standard. These
examples involve a likelihood that does not obviously factor into independent components
and/or parameter spaces which grow with the “sample size”.

Research on how to improve the efficiency of our importance sampler would be most
welcome, as would a better understanding of how many scenario draws must be taken in
practical real world settings to get reliable point estimates. It also seems likely that extant
insights from the literature on simulation-based econometrics could be adapted to improve
our basic approach. Some ideas in this general direction are discussed in Appendices C and D.

Our analysis involves a maintained equilibrium selection assumption. Here we have
assumed that the minimal NE is the one that is played in scenarios where multiple NEs
are possible. It would be easy to adapt our analysis to the case where instead the maximal
equilibrium is chosen. Miyauchi (2016) shows that, in some models, point estimates based on
these two extremal equilibria can be used to estimate the identified set for θ in the absence
of any assumptions about equilibrium selection. This could be an attractive approach
is settings where researchers are unwilling to maintain a particular equilibrium selection
assumption.

In multi-action games with non-exchangeable actions the assumption that Ut1, . . . , UtM are
iid is unattractive. Agents that have a taste for smoking may have, on average, a taste for
drinking as well. We speculate that a pairing of our basic algorithm with ideas underlying,
for example, the GHK simulator might be able to handle this extension. While this seems
interesting, it is non-trivial and beyond the scope of this paper.

Finally, our analysis is restricted to binary supermodular games. It would also be of
interest to explore whether the idea of “scenario sampling” can be extended/adapted to
non-binary choices and/or non-supermodular games (e.g., entry games with many possible
entrants as in Ciliberto and Tamer (2009)).
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Supplemental Web Appendix

The appendix includes proofs of the theorems stated in the main text as well as some
supplementary results and discussion. All notation is as established in the main text unless
stated otherwise. Equation number continues in sequence with that established in the main
text.

A Proof of Theorem 2

In this section we focus on the correctness of the algorithm. We elaborate in a series of
lemmata the structure our algorithm relies on.

We order two vectors y1 ≤ y2 if and only if for all elements i we have y1
i ≤ y2

i . With R we
denote the extended real line R = R ∪ {∞,−∞}. Let g : {0, 1}n → Rn be a supermodular,
monotone increasing function and u ∈ Rn

. We define the function Gu : {0, 1}n → {0, 1}n with
Gu(y) = 1 (g(y)− u ≥ 0). We define the function E : Rn → {0, 1}n with E(u) = (Gu)

n(0)
where 0 is the n-dimensional vector with all entries 0 and (Gu)

n = Gu ◦ ... ◦ Gu is the
composition of Gu (n times). G has the interpretation of a best-response function and E
that of an equilibrium selection (specifically it will return the minimal NE).

Lemma A.1. g is bounded.

Proof. g has finite domain.

Lemma A.2. E(u) is the unique minimal fixed point of Gu.

Proof. This follows form Tarski’s fixed point theorem and the fact that the longest strictly
increasing path is smaller then n. The uniqueness follows from supermodularity.

Lemma A.3. E is monotonically decreasing in u.

Proof. let u∗ ≤ u∗∗ then we have Gu∗(0) ≥ Gu∗∗(0). Because of the monotonicity of G we have
Gu∗(Gu∗(0)) ≥ Gu∗∗(Gu∗(0)) ≥ Gu∗∗(Gu∗∗(0)). Inductively we conclude E(u∗) ≥ E(u∗∗).

Next we study how the E function varies as only one entry of u changes. We first study
G.

Lemma A.4. If u∗j = u∗∗j for j 6= i then Gu∗∗(y)j = Gu∗(y)j .

Proof. For j 6= i we have Gu∗∗(y)j = 1
(
g(y)j − u∗∗j ≥ 0

)
= 1

(
g(y)j − u∗j ≥ 0

)
= Gu∗(y)j.

Corollary A.4.1. If u∗j = u∗∗j for j 6= i and Gu∗∗(y)i = Gu∗(y)i then Gu∗∗(y) = Gu∗(y).

Let eiu : R → {0, 1}n with eiu(x) = E(u
′
) where u′i = x and u′j = uj for j 6= i. In words:

eiu(x) returns the minimal equilibrium given taste shock vector u when ui in this vector is
replaced with x. The next Lemma shows that for any given set of taste shocks for all actions
j 6= i – {uj}j 6=i – we can find a threshold taste shock level t, such that for ui below (resp.
above) this threshold it will be an equilibrium to take action i (resp. not take action i).
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Lemma A.5. There is a threshold t such that eiu(x)i = 1 for x ≤ t and eiu(x)i = 0 for x > t.
Before and after the threshold eiu(x) is constant. We denote the outcome before the threshold
with y∗ = eiu(x) for x ≤ t and the outcome after the threshold with y∗∗ = eiu(x) for x > t.

Proof. The existence for a threshold follows directly from the monotonicity of E and the
shape of G. Let x′, x′′ > t and u′, u′′ be the corresponding u’s when the ith coordinate is
substituted with x′, x′′. We have E(u′) = (Gu′)

n(0) = (Gu′′)
n(0) = E(u′′). The second

equality follows from corollary A.4.1. This proves uniqueness of y∗∗.
The proof of uniqueness of y∗ requires a bit more work. Let x′, x′′ ≤ t with x′ < x′′ and
u′ < u′′ be the corresponding u’s when the ith coordinate is substituted with x′ < x′′. Because
E is monotone decreasing we have E(u′) ≥ E(u′′).
Let k be the first integer such that (Gu′)

k(0)i = 1 and l the first integer such that (Gu′′)
l(0)i =

1. By monotonicity we have k ≤ l. By corollary A.4.1 (Gu′)
k−1(0) = (Gu′′)

k−1(0) and by
monotonicity of G we have (Gu′)

k−1(0) ≤ (Gu′′)
l−1(0). Now keep in mind that u′ and u′′ only

differ in the dimension i, therefore we have (Gu′)
k(0) ≤ (Gu′′)

l(0). Again by monotonicity of
we have E(u′′) ≥ E(u′).

Next we describe the threshold, specifically how it can be calculated. Our construction is
related to the thought experiment described in the main text. First, perturb the ith preference
shock to be so large such that it is strictly dominant not to take action i. Second, consider the
form of the new resulting (minimal) equilibrium. The threshold is precisely the ith element
of g at this “counterfactual” equilibrium.

Lemma A.6. The threshold of eiu is t = g(eiu(∞))i.

Proof. Let x = t − ε and let u′ ∈ Rn
with u′i = x and u′j = uj for j 6= i. We have

Gu′(e
i
u(∞)) = 1

(
g(eiu(∞))− u′ ≥ 0

)
. Looking at the ith component we have eiu(∞))i = 0

and Gu′(e
i
u(∞))i = 1

(
g(eiu(∞))i − u

′
i ≥ 0

)
= 1 (ε ≥ 0) = 1. Therefore eiu(x)i = 1 and thus

eiu(x) = y∗∗. On the other hand, let x = t + ε and let u′ ∈ Rn
with u′i = x and u′j = uj for

j 6= i. We have Gu′(e
i
u(∞)) = 1

(
g(eiu(∞))− u′ ≥ 0

)
. Looking at the ith component we have

eiu(∞))i = 0 and Gu′(e
i
u(∞))i = 1

(
g(eiu(∞))i − u

′
i ≥ 0

)
= 1 (−ε ≥ 0) = 0. Now let u′′ ∈ Rn

with u′′i =∞ and u′′j = uj for j 6= i. Note that (Gu′′)
k(0) ≤ (Gu′′)

n(0) for k ≤ n. By Corollary
A.4.1 we have y∗ = eiu(∞) = E(u′′) = (Gu′′)

n(0)) = (Gu′)
n(0)) = E(u′) = eiu(x).

With these preliminary results in hand, we can move on to show correctness of Algorithm
3.

Lemma A.7. Algorithm 2 (resp. 4) Threshold Finder with input u returns t =
g(eiu(∞))i.

Proof. We define g as g(y) = x′tβ + Gtyδ − ut (resp. g(y) = x′tmβm + sm (yt,−m,y−t)
′ δm).

Note that g is in both cases supermodular and monotone increasing.

We can now prove the first claim of Theorem 2.

Theorem A.8. Algorithm 1 (resp. 3) Scenario Sampler with input y returns a shock u
such that y is the minimal NE at u.
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Proof. Let n = NT (resp. n = NMT ) The algorithm produces shocks u(0),u(1),u(2), ..,u(n)

in step 2, shocks u(n+1),u(n+2), ..,u(2n) in step 3 and returns u = u(2n). The claim is E(u) = y.
We prove this by induction.
Induction start: u(0) has only ∞ or −∞ as entries. For any y′ ∈ {0, 1}n we have Gu(0)(y′) =
1
(
g(y′)− u(0) ≥ 0

)
= y and therefore (Gu(0))n(0) = y = E(u(0)).

Induction step: The claim is true for u(0),u(1),u(2), ..,u(k). If yk+1 = 1 we have u
(k)
k+1 =

−∞ and u
(k+1)
k+1 ∈ (−∞, t]. By Lemma A.5 and Lemma A.6 we have E(u(k)) = E(u(k+1)).

Similarly, if yk+1 = 0 we have u
(k)
k+1 = ∞ and u

(k+1)
k+1 ∈ (t,∞). By Lemma A.5 and Lemma

A.6 we have E(u(k)) = E(u(k+1)).

It remains to be shown that

Theorem A.9. For every shock u with minimal equilibrium y, it is possible that Algorithm
1 (resp. 3) Scenario Sampler with input y returns shock u.

Proof. Let u be a taste shock with minimal equilibrium y. We first look at Step 2. Note that
for yk = 0 we have 0 = eku(∞)k = eku(uk)k = 0 and eku(∞) = eku(uk) = y. Now uk > g(y)k the
threshold is t = g(eku(∞))k = g(y)k so uk > t.
Now we look at Step 3: we have u(n+1),u(n+2), ..,u(2n) ≤ u. Furthermore we know that for all
yk = 1 the equilibrium/fixed-point condition implies that shock uk fulfills uk ≤ g(eku(∞))k =
t. Now g is monotone increasing and E is monotone decreasing, therefore the function
T : Rn → R with T (u) = g(eku(∞))k is monotone decreasing. Therefore uk ≤ g(eku(∞))k =
T (u) ≤ T (u(k)) = g(ek

u(k)(∞))k. Note that T (u(k)) is the threshold for the algorithm in
iteration k of Step 2.
We conclude that it is possible that Algorithm 1 (resp. 3) Scenario Sampler to draw
u.

The proof of Theorem 1 (resp. 1) in the main text follows directly from Theorem A.8,
which proves the first claim, and Theorem A.9, which proves the second claim.

B Details of Monte Carlo experiments

The Monte Carlo design uses a random geometric network to construct D. The friend-
ship network is exogenous and determines who is a peer of whom. Specifically agents

are scattered uniformly on the two-dimensional plane
[
0,
√
T
]
×
[
0,
√
T
]
.The network

is then generated according to the rule Dst = 1 (Ast − Ust ≥ 0), with Ust logistic and
Ast taking one of two values. If the Euclidean distance between agents s and t is less
than or equal to r, then Ast = ln

(
0.75

1−0.75

)
, otherwise Ast equals negative infinity. This

calibration means that agents link to anyone less than r apart with probability 0.75, while
those greater than r apart link with probability zero. Self-links are not allowed such that
the diagonal elements of D are all equal to zero. This basic design features in Graham (2016).

The expected out- and in-degree of a randomly sampled agent in the resulting network is
approximately 0.75πr2. We set r = 10/0.75π such that average degree is approximately 10.
With these parameter values almost all agents are part of one giant component.
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The best reply function for agents t = 1, . . . , T is

Yt = 1(β1X1t + β2X2t + β3X3t + β4X4t + δD′tY − Ut) > 0), (19)

with Ut a normally distributed random utility shock. We draw X1t, X2t with proba-
bility 1

2
from {0, 1}, as group indicator variables. We draw X3t, X4t uniformly from

[0, 1] as continuous covariates. The configuration of covariates across agents, that is
the X matrix, is held fixed across Monte Carlo replications. We set the parameters
β1 = −1, β2 = −0.5, β3 = −1, β4 = 0.5 and δ = 0.2. The above system of equations has
multiple solutions; we assume that agents play the minimal equilibrium (i.e., the solution
where the fewest number of agents take the action).

For each simulation, we draw the utility shocks U and then find the minimal solu-
tion, Y, to (19) using fixed point iteration (Tarski, 1955). We estimate β and δ by simulated
maximum likelihood (SML) using the observed values of X and Y.

C Differentiability

In this section we show how the simulated log likelihood can be differentiated. This facilitates
the use of gradient-based optimization methods and, consequently, allows a researcher to fit
models where the dimension of θ is non-trivial. It also allows for standard error computation
via the log-likelihood Hessian matrix. As noted by McFadden (1989), Ackerberg (2009) and
others, one advantage of importance sampling in the SML context is that the simulated
log-likelihood function is differentiable. In this sense, the arguments in this Appendix are
not especially novel. However we include them as they are useful for implementation and
our discussion provides additional insight into our overall approach to estimating “large”
games.

First, quickly, some high level intuition for what we are doing. Our estimator consid-
ers a number of sampled scenarios. As Figure 1 shows, a scenario can be thought of as a
rectangle shaped area (i.e., a hypercube). The borders of these rectangles vary with θ, either
increasing or decreasing the ex ante probability attached to any given scenario. The velocity
of these shifts can be traced out, allowing for the calculation of the derivative.

We start with a reformulation of equation (3) of the main text:

P̂r (Y = y|X; θ) =
1

S

S∑
s=1

∫
u∈B̃(s) fU (u) du

λy

(
B̃(s); θ(0)

) .
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Differentiating with respect to θ yields:

ˆ∂ Pr (Y = y|X; θ)

∂θ
=

1

S

S∑
s=1

∂
∂θ

∫
u∈B̃(s) fU (u) du

λy

(
B̃(s); θ(0)

) .

Note the value of λy

(
B̃(s); θ(0)

)
is determined a priori and does not vary with θ. Only the

numerator of (3) varies with θ. Note it very well may make sense to adjust the algorithm
such that it works better for certain values of θ. One heuristic is to begin with some θ(0) in
the denominator of (3) and construct a preliminary estimate of θ using just a few scenario
draws, S. Call this estimate θ̃. Then, in a second round of estimation, set θ(0) = θ̃, and
compute a new, more accurate, estimate of θ using a larger number of scenario draws, S.

We require the derivative of the integral∫
u∈B̃(s)

fU (u) du.

Geometrically this integral is over a multi-dimensional rectangle. Indeed, as shown earlier,
it has a “closed form” expression of

Pr
(

B̃(s) = b
∣∣∣X; θ

)
=

∫
u∈b

fU (u) du =
T∏
t=1

M∏
m=1

[
F
(
b̄tm
)
− F (btm)

]
,

where, recalling the notation from Section 2, b̄tm and btm are the upper and lower bucket
boundaries for agent t’s mth action in scenario b. By the product rule of differentiation we
get:

∂ Pr
(

B̃(s) = b
∣∣∣X; θ

)
∂θ

= Pr
(

B̃(s) = b
∣∣∣X; θ

)[ T∑
t=1

M∑
m=1

f
(
b̄tm
)
∂b̄tm
∂θ
− f (btm)

∂btm
∂θ

F
(
b̄tm
)
− F (btm)

]
,

where b̄tm and btm are affine functions of θ with simple derivatives (see Section 2 of the main
text). Returning to the high level intuition introduced above, ∂b̄tm

∂θ
is the velocity with which

the scenario boundaries are moving, while f
(
b̄tm
)

is the density at the boundary, itself a
measure on how much probability is lost or gained as the border changes. The product of
these two terms equals the change in probability (re-scaled according to the product rule).

Putting it all together we get the total derivative of the log likelihood. While there
are many summands involved, their total is polynomial in the number of parameters, the
number of scenarios, the number of players and the number of actions of each player. This
make the method computationally feasible.

As a final note we consider the case when the researcher observes N independent
games. In this case the it is possible to draw scenarios separately for each game. This
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facilitates the computation as well as the derivation of asymptotic properties. With N
games the simulated log-likelihood takes the form

ln P̂r (Y = y|X; θ) =
N∑
i=1

ln P̂r (Yi = yi|Xi; θ) (20)

with gradient vector

∂ ln P̂r (Y = y|X; θ)

∂θ
=

N∑
i=1

1

P̂r (Yi = yi|Xi; θ)

∂P̂r (Yi = yi|X; θ)

∂θ
. (21)

D Recycling

Efficient implementation of a simulation-based estimator involves a number of subtle details.
Equation (3) is an average over scenarios. Whether an underlying sets of random utility
shocks lies in one scenario or another varies with the scenario boundaries, themselves
functions of the underlying parameter, θ. In this Appendix we discuss some practical
implications of this observation for estimation.

As in other applications of simulated maximum likelihood, to avoid criterion function
“chatter” the researcher should begin estimation by drawing S × T × M independent
standard uniform random variables. These draws are subsequently held fixed as estimation
proceeds. To recompute the scenarios B̃(s) for s = 1, . . . , S as θ changes during optimization,
the researcher uses these initial simulated uniform random variables in conjunction with
the inverse probability transform method in Steps 2.a and 3.a.ii of Algorithm 3 to generate
new preference shocks. This method keeps the underlying simulation randomness constant
as optimization proceeds (making the target function smooth in θ), in turn allowing for
the discovery of a well-defined criterion function maximum. This approach to SMLE is
standard.

In this section we discuss how, in some settings, it is possible to speed up computa-
tion further by “recycling” scenarios. This can substantially reduce the computational cost
of the optimization.

To understand how it is possible to reuse, or recycle, the scenarios is is essential to
have a closer look at how they are constructed. The scenarios are constructed in step
3.b of the Scenario sampler algorithm (Algorithm 3). One way to rigorously find
the scenario, say, B̃ associated with a given vector of taste shocks, U is as follows.
First, evaluate gtm(y, xtm) for all y, to find the bucket borders for action m of agent
t (do this is for all TM strategic actions). Second, for each coordinate of U find the
lower and upper boundaries of the bucket into which it falls. The buckets for each Utm
are then combined to find the scenario associated with the full utility shock vector, U.
This method is not feasible, however, because y can take exponentially many values.
Fortunately, in practice, it is usually possible to apply some heuristics and find the right
bucket for each Utm in reasonable time. For example, in the peer effects model a bucket

6



corresponds to a utility shock range where if k friends of agent t take the action, agent t
also takes the action. In this case, for a given realization Utm, we can simply look up how
many friends are needed for agent t to take the action and get the required bucket boundaries.

The mapping from preference shocks to scenarios gets more complicated in models
with multiple strategic parameters. For example, consider the network formation game
where agents value both reciprocity and transitivity in links. Here you could find the bucket
in which Utm lies by (i) considering the number of transitive triads t needs in order to form
the link with s when the (t, s) arc is reciprocated and (ii) repeating the same computation for
the case where the (t, s) arc is unreciprocated. In both cases we get a partition of the support
of Utm. We then can find the buckets by taking the intersections of all the intervals in the two
partitions. From this discussion, it is apparent that the computational cost increases strongly
with the number of strategic parameters. However, in most application there will only be a
few strategic parameters and computation remains feasible. Indeed, in all of our examples it
is possible to construct a heuristic for finding the scenario associated with a shock realization
efficiently. The major part of the computational cost associated with estimation involves
the repeated updating/simulation of the utility shocks (and hence the scenarios) as θ changes.

Lets consider the case with only one strategic parameter in detail. Assume
gtm(y, xtm) = x′tmβm + s (yt,−m,y−t) δ with δ > 0. The set Ltm = {s (yt,−m,y−t) |yt,−m ∈
{0, 1}M−1 & y−t ∈ {0, 1}(T−1)M} is finite. We can enumerate it starting from the
smallest value l1mt to the biggest value; the elements of Ltm partition the real line into
#Ltm + 1=Ltm + 1 intervals. The same logic applies to all values of t and m. By taking
the Cartesian product of these partitions we get a partition of RTM , the support of the
random utility preference shocks, U. This partition can be enumerated explicitly by using
the enumeration of the intervals of the real lines lexicographically.

Observe that the function g scales the values of Ltm by a positive value and then
translates the values. Both of these operations are order preserving: there is a one-to-one
correspondence of the partition of RTM constructed above and the scenarios B. This is
very useful since it implies that the number of scenarios does not depend on the value of
θ. Furthermore, the scenario boundaries are affine functions of θ. In particular the bucket
boundaries are are continuous and differentiable in θ.

Recall equation (3) of the main text

P̂r (Y = y|X; θ) =
1

S

S∑
s=1

ζ
(
B̃(s); θ

)
λy

(
B̃(s); θ(0)

) .
The only part of this expression depending on the parameter θ is ζ

(
B̃(s); θ

)
. With only one

strategic parameter ζ
(
B̃(s); θ

)
is a smooth function of θ. This makes it possible to evaluate

the estimated likelihood at different parameter values without the need to repeatedly sample
new scenarios. By reusing (or recycling) the scenarios during optimization, the computation
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of an iteration is reduced substantially.

For the case when there is more than one strategic interaction parameter this does
not work. The easiest way to see this is to consider again the network formation game
where the scenarios are constructed by using the intersection of intervals. The number of
scenarios in this case will depend on the values of θ. As a result the estimated likelihood
is only locally differentiable and it is not possible to reuse the scenarios at a different value of θ.

Scenario recycling is related to the change-of-variables method proposed in Ackerberg
(2009) to minimize function evaluation in complex structural econometric models. His
method also appears to be limited to models with a single strategic parameter (see part 1
of his CS assumption). Although related, “scenario recycling”, as described here does not
appear be a special case of his approach.
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