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1 Introduction

Debates about the social costs and benefits of segregation by socioeconomic status, ability,

race or gender figure prominently in discussions of education, housing and other areas of

social policy. In the late-1960s Coleman (1966) argued that racial isolation lowered the

academic achievement of minority students. This claim immediately generated controversy,

spawning a vast empirical literature in education, sociology and economics. Forty years later

Rivkin and Welch (2006), surveying the resulting body of work, concluded that “the effect

of integration on black students remains largely unsettled” (p. 1043). Schofield (1995),

reviewing the education and sociology literature, comes to a similarly tentative conclusion,

emphasizing the “methodological and other problems that typify work in this area” (p.

597). After almost six decades of research, school busing and other mandated desegregation

policies remain controversial. Other unsettled debates touching on issues of ‘segregation’

include those on school vouchers, single-sex schooling, ability tracking and public housing

policy.2

Each of these debates centers on a common question: would society be better off if social

groups were configured differently? Are there welfare-increasing deviations from the status

quo assignment of individuals to classrooms, schools or neighborhoods? How do average

outcomes and inequality respond to ‘reallocations’ of individuals across groups? Durlauf

(1996a) has termed such reallocating policies ‘associational redistribution’.

Despite the long-standing controversy surrounding reallocation-inducing policies, econo-

metric methods for framing and analyzing their effects are not widely available. Researchers

interested in, for example, segregation in schools typically focus their efforts on identify-

ing and estimating an average relationship between school racial composition and student

achievement (e.g., Angrist and Lang, 2004; Guryan, 2004; Card and Rothstein, 2007). The

optimality of segregation relative to integration is inferred by reference to this estimated

relationship.3 The target estimand of this literature, the average marginal effect of school

2Disagreements about the magnitude and relevance of ‘cream-skimming’ in response to widespread school
choice figure prominently in the debate on educational vouchers (e.g. Hoxby, 2003; Ladd, 2003; Manski, 1992;
Urquiola, 2005)
The evidence on the achievement effects of single-sex instruction is mixed (e.g., Morse, 1998; Mael, 2005),

although this interpretation is debated by advocates of gender-separation (e.g., Sax, 2005). In 2006 the
United States Department of Education, in a controversial decision, modified Title IX regulations to allow
the formation of single-sex classrooms in public schools (Paulson and Teicher, 2006).
The literature on school tracking is enormous with supporting evidence available for both its advocates

and opponents. For discussions see Oakes (1992) Epple et al. (2002), and Figlio and Page (2002).
Massey and Denton (1993, p. 231) advocate for increased use of housing vouchers and decreased use

of public housing projects. The effects of housing vouchers are analyzed by Jacob (2004) and Kling et al.
(2007).

3The original Coleman Report provides a particularly thoughtful example of this type of informal inference
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racial composition on student achievement, does not correspond to an implementable policy.

It would be impossible, for example, to engineer an increase in minority enrollment across all

schools – the policy effect measured by this estimand – since an increase in such enrollment

in one school necessarily requires a commensurate decrease in another. While knowledge of

the (average) mapping between school racial composition and outcomes may be an ingre-

dient to an evaluation of a particular race-based allocation of students to schools, it is not

sufficient.4

In this paper we provide an initial exploration of the econometrics of reallocating indi-

viduals across groups in the presence of social spillovers. Our analysis emphasizes issues of

measurement, that is, the definition of relevant target estimands. Additionally, we provide

conditions for nonparametric identification, propose estimators and characterize their large

sample properties. We implement our procedures using data from the randomized Tennessee

class size reduction experiment, Project STAR. Following Whitmore (2005) we use these data

to study the effects of classroom gender mix on student achievement.

Our setup generalizes that of a class of stylized locational sorting models developed by

de Bartolome (1990), Benabou (1993, 1996), Becker and Murphy (2000) and others.5 As in

those papers, we consider a setting where individuals are either ‘high’ or ‘low’ types, with

outcomes nonparametrically depending on the type composition of their social group. We

add statistical content to this framework by introducing unobserved individual heterogeneity.

We also allow for location-specific heterogeneity (both observed and unobserved). These

extensions complicate our analysis but are, of course, essential for empirical relevance.

An example, which we develop empirically below, helps to clarify the various issues in-

volved. Consider a setting where individuals are students, with high and lows types respec-

tively denoting girls and boys. Students may differ in unobserved ways, for example in their

ability. A social group is a classroom of students. Classrooms may also be heterogeneous, for

example in observed and/or unobserved dimensions of teacher quality. This set-up is com-

plicated because there are three distinct levels of heterogeneity: individual-level, peer-level

and location-level. Any analysis of peer effects must keep track of, and impose conditions

process:

“If a white pupil from a home that is strongly and effectively supportive of education is
put in a school where most students do not come from such homes, his achievement will be
little different than if he were in a school composed of others like himself. But if a minority
pupil from a home without much educational strength is put with schoolmates with strong
educational backgrounds, his achievement is likely to increase” Coleman (1966, p. 22).

4More generally the menu of program evaluation estimands surveyed by Imbens (2004), Heckman and
Vytlacil (2007a,b) and others is, at best, only indirectly helpful for assessing the effects of reallocations. We
justify this claim further below.

5Much of this theoretical literature is surveyed by Piketty (2000), Fernández (2003) and Durlauf (2004).
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on, these three types of heterogeneities. Our approach involves imposing restrictions on

the group formation process; both the mechanism whereby specific individuals sort together

into groups, and that whereby such groups place themselves in specific locations. While

we are restrictive regarding the process which generates the status quo allocation of indi-

viduals to groups, we are very flexible elsewhere. An alternative, complementary, approach

would involve imposing more restrictions on, say, the ‘production technology’, in exchange

for imposing fewer restrictions on the status quo assignment process (e.g., Calabrese et al.,

2006; Ferreyra, 2007; Nesheim, 2002). We emphasize that our basic setup, in particular our

estimands and characterization of the social planner’s problem, is not linked to any specific

approach to identification.

We develop three classes of estimands. The first class measures the average strength of

any social spillovers. The central focus here is on what we call the average spillover effect,

βase. Here our contribution is modest; we provide a nonparametric generalization of prior

work on the measurement of spillovers (e.g., Manski, 1993; Brock and Durlauf, 2001; Moffitt,

2001; Glaeser and Scheinkman, 2003). In particular our measure of spillover strength can

be viewed as a (simple) nonparametric generalization of Ciccone and Peri’s (2006) ‘constant

composition’ externality measure.

We view our second set of estimands as more innovative. This class includes the local

segregation outcome effect, βlsoe, which measures the effect of small increases in segregation

(relative to the status quo) on average outcomes. We also develop a local segregation inequal-

ity effect, βlsie, which measures the effect of a small increase in segregation on the the average

outcome gap between high and low type individuals. These estimands provide a basis for

characterizing any equity versus efficiency trade-offs associated with segregation-inducing

policies.

Our final estimand allows us to assess the efficiency of the status quo allocation relative to

an outcome-maximizing allocation. In our setup the social planner’s problem is a functional

optimization (i.e., infinite dimensional) one. Nevertheless we are able to characterize its

solution quite generally. As we leave the (average) mapping from group composition to

outcomes a priori unrestricted (and also allow for a large number of social groups) our result

generalizes the social planner analyses of, for example, de Bartolome (1990), Benabou (1993,

1996) and Becker and Murphy (2000), in addition to providing them with statistical content.

Our framework offers several advantages over existing methods of characterizing social

spillovers. First, our approach explicitly connects the data with many of the ideas emphasized

in theoretical work on sorting in the presence of social spillovers. In particular, our estimands

provide measures of segregation-induced inefficiencies, a key theme of the neighborhood

sorting literature. For example, our local segregation outcome effect (LSOE) estimand has a
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representation as a weighted average of own and peer type complementarity and curvature.

Benabou (1996), in the context of a stylized deterministic model, shows how the efficiency

of segregation vis-a-vis integration depends on these two objects. Prior empirical work on

social externalities generally only loosely connects to the relevant applied public finance

theory. Fernández (2003), in her survey article, notes that “there has been very little work

done to assess the significance of the inefficiencies [induced by segregation],” despite the

growing body of empirical work that points to the importance of peer effects in a general

way (p. 14). Piketty (2000) makes a similar point.

Second our focus on reallocations is novel. While we leave the microstructure of any social

interactions processes unmodelled, our set-up allows us to think about reallocation-inducing

policies in a straightforward way. Many controversial policies, such as busing, ‘school choice’

regimes or the provision of rental vouchers to public housing recipients, are fundamentally

allocation mechanisms. Our estimands provide a partial basis for the evaluation of such

policies.

Finally, unlike most work in this area, Brock and Durlauf (2007) being an important

exception, our approach to identification and estimation is fully nonparametric.6 We provide

nonparametric estimators for our first two classes of estimands and also characterize their

large sample properties.7

In recent years economists and other social scientists have made substantial progress on

the identification and estimation of statistical models with social spillovers (e.g., Manski,

1993; Solon, 1999; Brock and Durlauf, 2001; Moffitt, 2001; Duncan and Raudenbush, 1993;

Sampson et al., 2002; Glaeser and Scheinkman, 2003; Graham, 2008). Our work builds on

this work inasmuch as the production technology is a component of each of our estimands.

However our focus substantially differs from this prior work. Our goal is to develop esti-

mands which directly characterize the effects of reallocations on the distribution of outcomes.

6Examples of formal identification analyses of parametric social interaction models include those of Manski
(1993), Brock and Durlauf (2001), Moffitt (2001) and Graham (2008).

7A limitation of our framework is that it is not helpful for assessing the effects of non-reallocating inter-
ventions, such as providing subsidies to low types. Manski (1993), Brock and Durlauf (2001) and Durlauf
(2004) discuss this class of policy interventions. The analysis of such interventions generally requires an
explicit model of the social interaction process. Durlauf (2004) makes a compelling case for greater focus on
the microeconomic foundations of social interaction processes. We are sympathetic to this perspective, but
nevertheless have found it useful to leave such structure unspecified in the present setting. Lazear (2001)
provides a nice, and now seminal, example of how a concrete microstructure of social interaction generate
specific reduced form mappings from group structure into outcomes. Since we leave this mapping nonpara-
metric, our approach is arguably consistent with a wide-variety of interaction microstructures. An important
caveat to this claim, however, is that explicit microstructures of strategic interaction can generate a mapping
from group composition into outcomes that exhibits discontinuities (e.g., Brock and Durlauf, 2001, 2007).
Since we estimate this mapping using kernel smoothing methods, our approach may work poorly in such
situations.
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Related work in this vein includes that of Graham et al. (2007, 2014, 2018) and Bhattacharya

(2009) (see Graham (2011) for a survey). More recently Hudgens and Halloran (2008) and

Manski (2013) develop a notation for the study of treatment response in the presence of

spillovers which shares features with our own setup.

Our work is also related to the mathematical programming and economic literature on

resource allocation problems (e.g., Ginsberg (1974); Ibaraki and Katoh (1988); Luenberger

(1969, 2005)). As noted above, in our setting the planner’s problem is one of functional

optimization. Our general characterization of the solution to this problem appears to be

new.8

The statistical aspects of this paper are most closely connected to the literature of semi-

parametric M-estimation as in Newey (1994a,b) and Newey and McFadden (1994). In par-

ticular our estimands share important features with weighted average derivatives as in Pow-

ell et al. (1989), Härdle and Stoker (1989), Newey and Stoker (1994) and others. While

straightforward to compute, our estimators combine multiple first step nonparametrically

estimated objects together in different ways. Most of our estimators, for example, require

nonparametric estimation of two conditional expectation functions as well as their deriva-

tives. Consequently characterizing their asymptotic properties, as we do below, is nontrivial.

Section 2, which follows next, describes our sampling structure and maintained identify-

ing assumptions. The need to carefully keep track of all the sources of individual, peer and

locational heterogeneity requires the development of a relatively elaborate set of notational

conventions. For our purposes we have found a heavily modified potential outcomes nota-

tion to be the most convenient for representing our problem and stating our assumptions

(Neyman, 1990; Rubin, 1974; Holland, 1986). To simplify the exposition we begin with the

stylized case where all groups are (i) equally sized and (ii) there are no covariates beyond

type (that status quo assignment of individuals to locations is, of course, known).

Section 3 presents our estimands. We begin by proposing a simple summary measure of

the strength of social spillovers. We then present measures of the outcome and inequality

effects of local reallocations of individuals across groups. Section 4 discusses estimation.

Section 5 briefly considers how observed individual- and location-specific characteristics can

be incorporated into our framework.

In Section 6 we discuss the planner’s problem. By characterizing the solution to this

8The closest work of which we are is aware is that of Arnott and Rowse (1987) which uses parametric
estimates of educational production functions and numerical programming methods to evaluate classroom
assignment mechanisms based on student ability. Their methods are fundamentally parametric in nature and
they do not discuss issues of identification, estimation or inference. Our analysis of the allocation problem
is also related to the neighborhood sorting models of de Bartolome (1990), Benabou (1993, 1996), Durlauf
(1996b,c), Epple and Romano (1998) and Becker and Murphy (2000).

5



problem we are able to show that the inefficiency of the status quo – the difference between

the observed average outcome and that which would occur under an outcome-maximizing

allocation – is identified under certain assumptions. In Section 7 we apply our methods,

and compare them with parametric alternatives, in a study of the effect of classroom gender

composition on student achievement using data collected in conjunction with the Tennessee

Project STAR experiment (see Whitmore, 2005). Section 8 summarizes and suggests areas

for future research. The proofs of our identification and representation results are contained

in Appendix B. The pathwise derivative calculations underlying our large sample results are

detailed in a Supplemental Web Appendix.

2 Setup and assumptions

In this section we present our statistical model and discuss the identifying assumptions we

maintain in subsequent sections. Throughout we use upper case letters to denote random

variables. Lower-case and calligraphic letters respectively denote specific realizations and the

support of the corresponding distributions. That is Y , y and Y respectively denote a generic

random draw of, a specific value of, and the support of, Y . A “0” subscript on a parameter

denotes its population value and may be omitted when doing so causes no confusion.

2.1 Population framework

There exists a population of individuals (e.g., elementary school students) indexed by i ∈
I = {1, . . . , IP}. Individuals are one of two observed types Ti ∈ {0, 1}, for example, boy or

girl. Additional individual level heterogeneity is contained in the vector Ai ∈ A. For reasons

of exposition we refer to Ai as an individual’s ‘ability’. We also refer, without intending

to be pejorative, to those individuals with Ti = 1 as ‘high’ types and those individuals

with Ti = 0 as ‘low’ types. The population fraction of high types is given by pH . We

assume that Ti is non-manipulable, denoting a permanent characteristic such as race or sex

assigned at birth. The outcome of interest, say, student achievement, is Yi ∈ Y and may

be discretely- or continuously-valued. For ease of exposition we initially assume there are

no observed individual characteristics beyond type (we introduce observed individual-level

attributes into our analysis in Section 5).

Individuals reside in different locations or, alternatively, ‘attend’ different ‘schools’. Lo-

cations are indexed by c ∈ C = {1, . . . , CP} . Associated with each location is a vector of

unobserved characteristics Uc ∈ U . If locations are, for example, schools, then Uc might

capture heterogeneity in teacher quality and facilities (we introduce observed location char-
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acteristics into our analysis in Section 5).

At times it will be necessary to compute averages across the population of locations and,

at others, ones across individuals. When we use a c subscript the relevant average is over

locations, whereas an i subscript signals an average over individuals.9

Each individual’s location of residence is given by the assignment indicator Gi ∈ C. If in-
dividual i resides in location c, then Gi = c. To avoid double subscripting we use the notation

Ui = UGi
. An allocation is a feasible assignment of individuals to groups and is completely

specified by a vector of group assignment indicators G =(G1, . . . , GIP )
′ . Feasibility of an

assignment implies that (i) each individual is assigned to one, and only one, location and (ii)

the capacity constraint associated with each location is respected (For example, if classroom

c has twenty seats, then no more than twenty students are assigned to it). Feasibility is

defined formally below.

Individuals assigned to a common location are neighbors. For ease of exposition we

initially assume that all neighborhoods have room for exactly N = IP/CP residents (we

allow for unequally sized groups in Sections 5 and 6).

Individual i′s peer group includes those individuals also assigned to her location, i.e. the

index set

p (i) = {j : Gj = Gi, j ̸= i} .

These peers’ types and abilities are given by the vectors

T p(i) =
(
Tp(i),1, . . . , Tp(i),N−1

)′
, Ap(i) =

(
Ap(i),1, . . . , Ap(i),N−1

)′
.

where the subscripts p(i), j with j = 1, . . . , N − 1 indicate the members of i’s peer group in

arbitrary order. Let T i = (Ti, T
′
p(i))

′ and Ai = (Ai, A
′
p(i))

′ denote the vectors of types and

abilities in i′s social group inclusive of herself.

The ith individual’s neighborhood quality, Qi, depends on the type and ability of her

peers as well as the vector of unobserved location characteristics Ui :

Qi = (T ′
p(i), A

′
p(i), U

′
i)

′.

9In principle our “double use” of a single index notation could cause confusion; Uc and Ui denote the
unobserved quality of location c and that of the location in which individual i resides respectively. This
is clear. The meaning of U19, in contrast, is ambiguous. We are careful to avoid such ambiguity in what
follows.
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2.2 Potential outcomes notation

Our focus is on characterizing different (summary) features of the mapping from allocations

into outcomes. We assume that this mapping is individual-specific and given by

Yi(g), g ∈ G, (1)

where G denotes the set of all feasible allocations and the relation is individual specific due

to its (implicit) dependence on Ti and Ai. The function Yi(g) gives the potential outcome

for individual i associated with allocation g ∈ G.10,11

Tractability of our problem requires imposing restrictions on Yi(g). Our first restriction

rules out cross location spillovers.

Assumption 2.1. (No Cross Neighborhood Spillovers) Let g and g̃ denote two

distinct feasible allocations with associated neighborhood qualities for individual i of qi and

q̃i. If qi = q̃i, then

Yi(g) = Yi(g̃).

Assumption 2.1 means that individual outcomes depend only upon own characteristics

and neighborhood quality; the type-structure, ability distribution, and location character-

istics of, for example, adjacent neighborhoods do not affect outcomes. In the case where

locations are spatially separated schools Assumption 2.1 may be reasonable. If locations

represent residential neighborhoods the assumption of no cross location spillovers is consid-

erably stronger. Nevertheless some restriction on the structure of dependence across locations

is required for statistical analysis.

Under Assumption 2.1 we may write

Yi(G) = Yi(T p(i), Ap(i), Ui) = Yi(Qi).

Our next assumption restricts the structure of peer influences within a neighborhood.

10Associated with each assignment is a mechanism by which it came about. For example assignment
may be by lottery, tournament, or determined by a social planner. Implicit in (1) is the assumption that,
conditional on the induced assignment, the mechanism by which it was achieved does not affect outcomes.
If a court-ordered mandatory school busing plan induces the same allocation of students across schools as a
lottery, then the associated outcome distributions will also be identical. This may be a strong assumption
in certain settings. Schofield (1995), in her review of educational research on the impact of desegregation
on black achievement, presents evidence suggesting that the desegregation mechanism matters. Similar
(implicit) assumptions underlie the program evaluation literature (see Holland, 1986)

11The potential outcomes notation is convenient for our purposes, however, we could also use the ‘produc-
tion function’ notation

Yi = g (Ti,G, Ai) ,

with Ai playing the role of a (non-separable) disturbance.
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Let NH
i =

∑N−1
j=1 Tp(i),j and NL

i =
∑N−1

j=1

(
1− Tp(i),j

)
denote the total number of high and

low type peers for individual i (here Tp(i),j denotes the j
th element of T p(i)). Assume, without

loss of generality, that Tp(i) is ordered such that high types appear first, followed by low types

(i.e., Tp(i) = (1, . . . , 1, 0, . . . , 0)′). The N−1 vector of peer ‘abilities’ is arranged conformably

such that Ap(i) = (AH′

p(i), A
L′
p(i))

′, where AH
p(i) equals the N

H
i ×1 vector of abilities for each high

type peer in individual i′s social group and AL
p(i) equals the corresponding NL

i × 1 vector of

low type peer abilities.

Assumption 2.2. (Within-Type Peer Exchangeability) Let Ãp(i) = (Ã
H′
p(i), Ã

L′
p(i))

′

where Ã
H

p(i) and Ã
L

p(i) are permutations of AH
p(i) and AL

p(i), and let T̃ p(i) be a conformable

re-ordering of T p(i) (note that T̃ p(i) = T p(i) by construction), for all such within-type permu-

tations (i)

Yi(T̃ p(i), Ãp(i), Ui) = Yi(T p(i), Ap(i), Ui)

and (ii) the function Yi(T p(i), Ap(i), Ui) is a continuous function of
(
Ap(i), Ui

)
for all T p(i).

Assumption 2.2 implies that, among those of the same type, each of individual i′s peers

are equally influential. This restriction follows from standard exchangeability arguments.

As such it is a statement of researcher ignorance: a priori there is no reason to think that

i′s ‘first’ high type neighbor affects her differently than her ‘ninth’ (Rubin, 1981). Manski

(2000) and Durlauf (2001) have argued for improving data collection in order to avoid such

restrictions. For example, if the researcher knew that i′s ‘ninth’ high type neighbor was across

the street, while her ‘first’ was two blocks away, then Assumption 2.2 might be implausible.

However, in most datasets, the structure of within-group social networks is unavailable and

hence Assumption 2.2 is an appropriate, as well as unavoidable, representation of prior

information.12

Let S−i denote the fraction of i’s peers that are high types (i.e., Si = NH
i /N and S−i =

NH
i −Ti

N−1
. By Assumption 2.2 and the Weierstrass Theorem we can approximate the function

Yi(T p(i), Ap(i), Ui) by

Yi(T p(i), Ap(i), Ui) ≈ Yi(S−i, τKH
(AH

p(i)), τKL
(AL

p(i)), Ui)

with τKH
(AH

p(i)) denoting the vector of the first KH symmetric polynomials in AH
p(i) and

12Calvó-Armengol et al. (2009) provide a nice example of how richer network data can be used to study
peer influences. Examples of this nature are more numerous today relative to when this paper was initially
drafted. Note that, as may become apparent to careful readers below, exchangeability of the potential
response function in the peer abilities’ does not appear to be required for our main results. This follows
because these latent variables are integrated out below under a particular density factorization.
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τKL
(AL

p(i)) defined similarly (see Altonji and Matzkin, 2005, pp. 1062 - 1063).13

We emphasize that Assumption 2.2 allows for individuals to be differentially affected by

the ability structure of their high- and low-type peers. For example, outcomes may vary

freely with the average ability of low type peers and/or the average ability of high type

peers (rather than being restricted to vary with average ability taken across all peers). Some

individuals, for example, may be particularly sensitive to variation in high-type peer ability,

while others to variation in low-type peer ability.

Our final restriction on Yi(g) follows from being precise about the meaning of an agent’s

type.

Assumption 2.3. (Inclusive Definition of Type) Ti ⊥ Ai

Independence of Ai from Ti follows by definition of the phenomena we seek to characterize.

We are interested in whether, for example, an individual learns more when surrounded by

female classmates. Not whether he learns more when surrounded by female classmates once

we condition on their ‘disruptiveness’. If, across the population under consideration, girls

tend to be less disruptive than boys, then these two questions have different answers. For

the first question the appropriate definition of Ai is precisely all individual heterogeneity

that is independent of Ti. We want our notion of ‘gender’ to include, not exclude, systematic

differences in behavior across boys and girls.14

If Ai is scalar Assumption 2.3 can always be imposed by a normalization. Assume that

unnormalized ability is A∗
i , then normalized ability is given by Ai = F (A∗

i |Ti). That is our
13For the case where AH

p(i) is scalar the elementary symmetric polynomials are of the form

e0

(
AH

p(i)

)
= 1

e1

(
AH

p(i)

)
=

∑
1≤j≤NH

i

AH
p(i),j

e2

(
AH

p(i)

)
=

∑
1≤j<k≤NH

i

AH
p(i),jA

H
p(i),k

e3

(
AH

p(i)

)
=

∑
1≤j<k<l≤NH

i

AH
p(i),jA

H
p(i),kA

H
p(i),l

...

eNc

(
AH

p(i)

)
= AH

p(i),1A
H
p(i),2A

H
p(i),3 . . . A

H
p(i),NH

i
,

so that τKH

(
AH

p(i)

)
=

(
e0

(
AH

p(i)

)
, e1

(
AH

p(i)

)
, . . . , eKH

(
AH

p(i)

))′
. Weyl (1946) discusses such polynomials

for the multivariate case.
14If Ti indexes a manipulable ‘treatment’ then this assumption, of course, has more content. Our framework

can be adapted to this case (see Manski (2010) for an elegant development).
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definition of an individual’s ‘ability’ is their rank amongst those of their own type.15 Let

Yi = g(Ti, Ai, s−i, τKH
(aHp(i)), τKL

(aLp(i)), ui) = Yi(s−i, τKH
(aHp(i)), τKL

(aLp(i)), ui) denote the ith

individual’s potential outcome given assignment to a group with fraction S−i = s−i high

type peers, peer abilities τKH
(AH

p(i)) = τKH
(aHp(i)) and τKL

(AL
p(i)) = τKL

(aLp(i)), and location

attributes Ui = ui (here g(·) is the production function notation for the potential outcome

function defined in footnote 11 above). Assuming the distribution of Ai does not depend

on Ti does not restrict the conditional distribution of Yi(s−i, τKH
(aHp(i)), τKL

(aLp(i)), ui)
∣∣∣Ti so

that Assumption 2.3 can be made without loss of generality.

The allocation response function Yi(S−i, τKH
(AH

p(i)), τKL
(AL

p(i)), Ui) defines an individual-

specific mapping from peer types, ability, and neighborhood characteristics into outcomes.

In our framework the ‘treatment’ induced by a given allocation is a specific configuration

of peers, as summarized by their observed type composition, S−i, and unobserved ability,

τKH
(AH

p(i)) and τKL
(AL

p(i)). Residence in a specific location, where specificity is indexed by

the vector of unobserved characteristics Ui, is also a feature of the ‘treatment’.

The non-observability of Ap(i) and Ui generates complications, relative to the standard

potential outcomes model of causal inference (Neyman, 1990; Rubin, 1974; Holland, 1986),

because it implies that we do not observe the full ‘treatment’. The observed treatment is

an assignment to a set of peers with a given type composition. However, because peers

and locations are heterogeneous, observationally equivalent assignments may be associated

with distinct treatments (and hence potential outcomes). Assumptions 2.1 and 2.2 are not

strong enough to ensure that the observed treatment satisfies the homogenous treatment

assumption that is part of Rubin’s Stable-Unit-Treatment-Value-Assumption (SUTVA) (see

Rubin, 1990; Holland, 1986).16

To deal with this issue we define an intermediate object: the expected allocation response

15Many of our results extend straightforwardly to the case where unnormalized ability is a J × 1 vector
A∗

i = (A∗
1i, . . . , A

∗
Ji)

′. In that case Assumption 2.3 is imposed by the one-to-one mapping

A1i = F (A∗
1i|Ti)

A2i = F (A∗
2i|A∗

1i, Ti)

...

AJi = F
(
A∗

Ji|A∗
1i, . . . , A

∗
J−1i, Ti

)
.

16In related work Sobel (2006a,b) conceptualizes neighborhood effects as violations of SUTVA.

11



function. Individual’s i′s expected allocation response function is given by

Y e
i (s−i) =

∫ ∫
. . .

∫
Yi(s−i, τKH

(aHp(i)), τKL
(aLp(i)), u)

 ∏
j∈p(i)

fA(ap(i),j)dap(i),j

 fU(u)du.

(2)

Equation (2) gives an individual’s expected outcome when assigned to a group with peer

composition S−i = s−i when groups are formed in a certain way. The group formation

process enters into the definition of Y e
i (s−i) because it is meant to measure the expected

effect of exogenous changes in observed peer composition, s−i. For this effect to have a causal

interpretation it should be unconfounded by the effects of matching and/or sorting of peers.

Matching occurs if individuals choose (or are assigned to) a location on the basis of its

unobserved attribute Uc and the utility derived from that choice depends on own attributes

(Ti, Ai). Matching implies that the vector (T i, Ai) of individual peer and own attributes at

the location of i is related to the unobserved location characteristic Ui. Hence there is no

matching if

(T i, Ai) ⊥ Ui,

which implies the density factorization

fA,U |T (ac, uc|tc) = fA|T (ac|tc)fU(uc).

Sorting is related to the distribution of Ac|T c. Sorting occurs if, for example, an individ-

ual’s unobserved ability, Ai, is related to those of her peers, Ap(i). Such a dependence would

arise if an individual’s preference for a location (or the assignment rule used) depends on the

attributes and types of its residents and this preference varies systematically with (Ti, Ai).

The absence of sorting therefore implies that

(T p(i), Ap(i)) ⊥ Ai

∣∣Ti,
so that, conditional on own type, own ability does not vary with the type or ability compo-

sition of one’s peers. No sorting generates the density factorization (see Appendix B)

fA|T (ac|tc) =
N∏
j=1

fA|T (acj|tcj) =
N∏
j=1

fA(acj),

where the final equality is due to Assumption 2.3 and we use a double subscript notation with

j indexing individuals within a group in arbitrary order. Note that sorting, as defined above,

does not preclude high types seeking out peer groups composed of many other high types (i.e.,
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sorting on observables is allowed). Consequently the distribution of peer composition across

groups is not restricted by the absence of sorting. There is neither matching nor sorting

if, for a group of a given type composition, high type members are random draws from the

subpopulation of high types, low type members are random draws from the subpopulation

of low types, and the group, so formed, is randomly assigned to a specific location.

In the absence of both matching and sorting the joint density of Ac, Uc given T c factors

into

fA,U |T (ac, uc|tc) =

{
N∏
j=1

fA(acj)

}
fU(uc),

which is the product of marginals being integrated over in (2), which defines Y e
i (s−i).

Averaging Y e
i (s−i) over the subpopulations of low and high types gives the type-specific

mean allocation response functions

m∗
L (s−i) = E [Y e

i (s−i)|Ti = 0] , m∗
H (s−i) = E [Y e

i (s−i)|Ti = 1] .

In what follows it is convenient to instead work with the one-to-one mappings

mL (s) = m∗
L

(
sN

N − 1

)
, mH (s) = m∗

H

(
sN − 1

N − 1

)
(3)

where s is the overall fraction of high types in a group (inclusive of oneself). That is, we let

Sc =
∑IP

i=1
1(Gi=c)Ti

N
. denote the fraction of high types in location c. Henceforth we refer to

Sc as a location c’s group composition.

The type-specific mean allocation response functions mH (s) and mL (s) feature in each

of our estimands. They equal the expected outcome, given exogenous assignment to a group

of composition S = s, of a randomly selected member of, respectively, the subpopulation

of high and low types if groups are formed without matching and sorting. Most of our

identification results follow directly from identification of mH (s) and mL (s).

The overall mean allocation response function is given by the composition weighted av-

erage

m (s) = smH (s) + (1− s)mL (s) , (4)

which is the expected outcome of a randomly selected member of the population when

assigned to a group of composition S = s. This function is related to the average structural

function of Blundell and Powell (2003). A direct application of their definition would replace

the average in (2) with one over the joint distribution of (A′
c, U c)

′. Such an average would

not be causal in our setting as it would be contaminated by sorting (correlation in ability

across group members) and matching (correlation between ability and location quality) (see
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Graham, 2008, 2011, 2018; Graham et al., 2018). This is an example of how the presence of

heterogeneity from multiple individuals (as well as locations) in the production function for

each individual complicates analysis and requires extra care when defining estimands.

Equation (4) can be viewed as a statistical analog of the deterministic production technol-

ogy that features prominently in the theoretical public finance literature on multi-community

models (e.g., de Bartolome, 1990; Benabou, 1993, 1996; Durlauf, 1996b,c; Becker and Mur-

phy, 2000). In order to provide a clean characterization of locational equilibrium as well

as the solution to the social planner’s problem, the multi-community literature has gen-

erally placed strong a priori restrictions on m (s). A typical set of assumptions is that

mH (s)−mL (s) > 0 for all s ∈ S and that ∂2m (s) /∂s2 is either positive or negative for all

s ∈ S. Fernández (2003) provides an extensive discussion of the role of these assumptions in

this literature. In contrast, other than smoothness assumptions, we leave m (s) (essentially)

unrestricted.

Differentiating m (s) with respect to s gives the marginal effect of changes in group

composition on group average outcomes:

∇sm (s) = p (s) + e (s) ,

where

p (s) = mH (s)−mL (s) , e (s) = s∇smH (s) + (1− s)∇smL (s) .

The derivative of m (s) with respect to group composition consists of two parts. The first

part, p (s), is the effect of changing group composition on expected outcomes holding spillover

strength constant. It is the compositional effect of changing group composition on expected

group average outcomes. Irrespective of the presence of social spillovers, average outcomes

will often rise because the composition of the group has shifted toward high types. This effect

is private, in the sense that it reflects benefits that are entirely confined to the entering high

type.

The second component, e (s), measures the spillover or external effect associated with

increasing s. The introduction of an additional high type individual into the group creates

a spillover which raises outcomes for all individuals in the group. Benabou (1996) and

others have emphasized that, since agents do not internalize the second effect when choosing

locations, decentralized equilibria may be inefficient.

Our final three main assumptions ensure that mH (s) , mL (s) and their derivatives,

∇smH (s) and ∇smL (s), are nonparametrically identified. Nonparametric identification re-

quires imposing strong assumptions on the group formation process. In particular, while we

allow for matching and sorting on observables, we rule out the presence of these behaviors
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on unobservables (see Section 5). This assumption is easiest to justify when the assignment

is administratively determined, but under certain information structures it may also hold

when the assignment corresponds to a decentralized equilibrium.

We emphasize that semiparametric or parametric identification of mH (s) and mL (s) is

generally possible under weaker assumptions on the group formation process (e.g., Nesheim,

2002). The trade-off between the identifying power of a priori restrictions on the production

technology versus the assignment process is explored more fully in Graham (2011). Different

researchers will find different combinations of assumptions appropriate depending on the

application at hand. Our application, being based on a randomized experiment, allows us

to leave mH (s) and mL (s) fully nonparametric. We consequently develop estimation and

distribution theory appropriate to this case, although our estimands apply generally.

First we make an assumption on the status quo assignment mechanism. In particular,

we assume the absence of matching and sorting on unobservables, as defined above.

Assumption 2.4. (No Matching and Sorting On Unobservables)

(T i, Ai) ⊥ Ui, (T p(i), Ap(i)) ⊥ Ai

∣∣Ti.
Assumption 2.4 will be satisfied if groups are formed, and locations selected at random,

(i.e. under a double randomization scheme). To describe this scheme assume that the social

planner first chooses a feasible distribution of group compositions

F sq
S (s) ,

where the ‘sq’ superscript denotes ‘status quo’ and the density is across groups (i.e., it

describes composition for the population of locations/groups). Feasibility of the status quo

(as well as that of any other allocation), requires that it satisfies a restriction. Because the

fraction high types pH is fixed, and all groups are equally-sized, feasibility requires that

pH =

∫ 1

0

sf sq
S (s)ds, (5)

where we treat Sc as a continuously-valued random variable (as would be appropriate if the

common group size, N , is large).

After choosing a feasible joint distribution for group composition the planner fills high

and low type spaces in each group by randomly sampling from the high and low type sub-

populations. This ensures, along with Assumption 2.3, satisfaction of the second part of

Assumption 2.4. The social groups, so formed, are then randomly assigned to a specific
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location. Random assignment at this stage ensures that the first part of Assumption 2.4 is

satisfied.

As discussed above Assumption 2.4 rules out matching and sorting (on unobservables)

(see Graham, 2008, 2011; Graham et al., 2018). It does not, however, restrict the degree

of status quo segregation or integration (F sq
S (s) is unrestricted beyond the requirement

of feasibility). Consider the example where locations are schools and Ti = 1 for white

students and Ti = 0 for black students. In that case Assumption 2.4 implies that the ability

distribution of blacks is similar across schools regardless of the degree to which they are

segregated. Furthermore it requires that unobserved teacher quality is independent of the

degree to which a school is segregated. Clearly these are rather strong restrictions outside

of explicitly experimental settings. Nevertheless, by initially maintaining Assumption 2.4 in

what follows, we are able to develop some results on the effects reallocations in a reasonably

straightforward way. In Section 5 we show how the presence of observable location-level

attributes may be used to weaken Assumption 2.4.

Our next assumption ensures that the gradients, ∇smH (s) and ∇smL (s), are identified.

Assumption 2.5. (Continuous Variation) If f sq
S (s) > 0 then f sq

S (s′) > 0 for all s′ in

a neighborhood of s ⊂ S.

Assumption 2.5 only makes sense if it is legitimate to treat group composition, Sc, ‘as

if’ it were a continuously distributed random variable. Such an approximation requires that

the common group size, N , be relatively large. Thus our estimands and estimators are not

appropriate for situations where groups are small (e.g., college roommates).

Finally we assume the availability of a random sample of locations.

Assumption 2.6. (Random Sampling) {Y c, T c}
C
c=1 is a random sample of C neighbor-

hoods of I = CN individuals.

These last three assumptions, as well as the restrictions on each individual’s allocation

response function implied by Assumptions 2.1 to 2.3, ensure that mH (s) , mL (s) and their

derivatives with respect to s are identified.

Proposition 2.1. Under Assumptions 2.1 to 2.6 (i) mL (s) and mH (s) are identified for all

s such that f sq
S (s) > 0 by the conditional expectation functions (CEFs):

E[Yi|Ti = 0, Si = s] = mL(s), E[Yi|Ti = 1, Si = s] = mH(s),

and (ii) ∇smL (s, n) and ∇smH (s, n) are identified by the derivative of these CEFs with

respect to s.
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Proof See Appendix B.

We emphasize that Proposition 2.1 does not exhaust the set of all possible identification

approaches. While Assumption 2.4 may be satisfied under a locational equilibrium of the type

studied by Benabou (1996) and others, this will only be the case under strong informational

assumptions and/or a priori restrictions on the production technology. For example if agents

do not know Ai, nor observe Ap(i) and Uc, then all matching/sorting will be on observables

as required. Alternatively if the derivative of Yi(s−i, τKH
(aHp(i)), τKL

(aLp(i)), ui) with respect to

s−i is the same across all individuals of the same type, then agents will have no incentive to

match/sort on unobservables (if preferences depend on own outcomes alone).

An alternative approach to identifying mL(s) and mH(s) involves explicitly modelling

the sorting/matching process (and hence taking an explicit stand on preferences). Unfortu-

nately this approach will often require strong a priori restrictions on the form of mL(s) and

mH(s). Nesheim (2002) provides some positive semiparametric identification results (see also

Calabrese et al., 2006). Calabrese et al. (2006) and Ferreyra (2007) are examples of empirical

peer effects studies that assume that the status quo assignment corresponds to a locational

equilibrium.

The estimands we propose below will be of interest irrespective of the means by which

mL(s) and mH(s) are identified and estimated (although details of our treatment of estima-

tion are specific to the conditions of Proposition 2.1). The relative benefits of leaving mL(s)

and mH(s) nonparametric, while imposing strong restrictions on the sorting/matching pro-

cess, as we do here; versus imposing a priori restrictions on mL(s) and mH(s), but allowing

for more complex sorting/matching processes will vary from application to application.

3 Characterizing the effects of social spillovers

In this section we introduce new estimands which characterize different features of the out-

come effects of social spillovers. Prior work on the empirics of social interactions has em-

phasized testing for their presence and/or measuring their average strength. We therefore

begin by proposing a simple measure of average spillover strength. The primary goal of this

section, however, is to present summary measures of the effect of local reallocations on the

distribution of outcomes. In particular we consider the outcome and inequality effects of a

class of reallocations which increase segregation marginally.
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3.1 Measuring spillover strength

Manski (1993), Brock and Durlauf (2001), Glaeser and Scheinkman (2003) and Graham

(2008) emphasize the notion of a social multiplier or the ratio of the full effect of marginal

changes in group composition to the private effect:

∇sm (s)

p (s)
= 1 +

e (s)

p (s)
, for p (s) ̸= 0.

The social multiplier is an intuitive measure of spillover strength and has the virtue of being

unitless. Nevertheless, for simplicity, as well as technical reasons, we instead suggest a direct

measure of average spillover strength. Conditional on Si = s the average external effect is

given by e (s). Averaging over individuals gives an overall average spillover effect (ASE)

βase = E [dκ (Si) e (Si)] = E [dκ (Si) {Si∇smH (Si) + (1− Si)∇smL (Si)}] , (6)

where dκ (s) is a fixed trimming function that gives zero weight to values of e (s) near the

boundary of the support of S, specifically,

dκ (s) = 1 (s > s+ κ)1 (s < s− κ) , κ ⊂ S =

[
0,
s+ s

2

)
.

The introduction of fixed trimming into the definition of βase is somewhat awkward, but is

required to ensure that (i) the semiparametric efficiency bound for βase is non-zero and (ii)

to avoid boundary bias problems associated with nonparametric estimation of mH (s) and

mL (s) (see Newey and McFadden, 1994). We note that (6) is closely-related to the weighted

average derivative estimand studied in Powell et al. (1989) and Newey and Stoker (1994)

(among others); an observation that aided in undertaking the influence function calculations

presented below.

Equation (6) equals the mean external effect, or spillover benefit, of an unit increase in

the fraction of high type individuals in each group. Identification of βase follows directly from

Proposition 2.1 and random sampling. While it is easy to construct examples where the out-

come effects of reallocations are nontrivial even if βase = 0 (and vice versa), it is nevertheless

a simple summary measure of spillover strength; being a nonparametric generalization of the

target estimand of a large empirical literature (e.g., Coleman, 1966; Mayer and Jencks, 1989;

Solon, 1999; Angrist and Lang, 2004; Ciccone and Peri, 2006; Graham, 2008). While βase is

arguably of scientific interest it does not, since the peer structure of all individuals cannot

be simultaneously improved, measure the effects of an implementable policy.
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3.2 Measuring the effects of reallocations

The average spillover effect measures the outcome benefit of an infeasible increase in the

population frequency of high types. In contrast reallocations of individuals across groups,

since they leave the population type distribution unchanged, are, at least in principle, im-

plementable policies. Before considering the effects of a reallocation of individuals across

groups, we define the general class of reallocations under consideration. We assume that

the social planner, or allocating agency, observes each individual’s type, Ti and initial as-

signment (i.e., the planner observes F sq
S (s), the distribution of Sc under the status quo, and

knows pH
def
≡

∫ 1

0
sf sq

S (s) ds). The planner also knows the high- and low-type mean alloca-

tion response functions mH (s) and mL (s). The planner does not observe Ai or Uc (or is

institutionally constrained to not act on this knowledge).

We consider reallocations obeying the feasibility constraint∫ 1

0

sf r
S (s) ds = pH , (7)

where f r
S (s) is a valid probability density function. Equation (7) says that F r

S (s) cannot

imply an augmentation of resources, in this case the population frequency of high types.

The set of reallocations satisfying condition (7) is very large. In Section 6 we characterize

average outcome-maximizing reallocations. Here we consider estimands which characterize

the effects of a specific class of local reallocations.

Our local reallocation estimands measure the effects of a particular parameterization of

a small, segregation increasing (relative to the status quo), reallocation. Specifically they

give the sign of a small such increase in segregation on average outcomes and inter-type

inequality.

The reallocation density we consider takes the form

f r
S(s;λ, κ) =

s

1 + λdκ (s)
f sq
S

(
s+ λdκ (s) pH,κ

1 + λdκ (s)

)
, (8)

where pH,κ = E [Ti| dκ (Si) = 1] is the trimmed population frequency of high types (i.e., the

frequency of high types with status quo assignments to groups with group compositions in

the interior of S). Appendix B demonstrates that (8) is a feasible reallocation.

Implementing the allocation defined by (8) is equivalent to altering the composition of

the cth group according to the rule

Sr
c = Sc + λdκ (Sc) (Sc − pH,κ) , (9)
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so that (8) is effectively a mean-preserving spread of F sq
S (s) when λ > 0 . For λ > 0

(8) increases segregation across those groups with status quo compositions, Sc, within the

interval from s+κ to s−κ. It leaves group composition unchanged across those groups that

are initially highly segregated such that Sc ≤ s+κ or Sc > s−κ. Implementing (8) involves

moving high type individuals from groups where the fraction of high types is below their

trimmed population frequency (Sc < pH,κ), to groups where it is above that frequency (Sc >

pH,κ). Such moves are accommodated by switching each high type with a corresponding low

type individual. Highly segregated group compositions are left unchanged by (8) to (i) ensure

feasibility (it is difficult to increase segregation in a group that is already very segregated)

and (ii) for technical reasons. We assume that λ is small enough, or equivalently, κ large

enough, to ensure that Sr
c ∈ [0, 1] for all groups.

From (9) average outcomes after an segregation increasing reallocation are given by

E [m (Sr
i )] = E [m (Si + λdκ (Si) (Si − pH,κ))] .

We are interested in the direction of the effect of implementing (8) on average outcomes

when λ → 0. This corresponds to a small increase in segregation. Differentiating the above

expression with respect to λ and evaluating at λ = 0 gives the desired local segregation

outcome effect (LSOE):

βlsoe = E [dκ (Si)∇sm (Si) (Si − pH,κ)] = πκC (∇sm (Si) , Si| dκ (Si) = 1) , (10)

with πκ = Pr (dκ (Si) = 1) . Here V (Y ) notes the variance of Y and C (X, Y ) is covariance

with X.

Equation (10) is an intuitive condition. If groups where the fraction of high type agents

exceeds the trimmed population mean (Sc > pH,κ) tend also to be relatively responsive to

changes in s (i.e., ∇sm (Sc) is larger than average), then reallocations that reinforce any

existing segregation across groups will tend to raise average outcomes. In contrast, if groups

with a low fraction of high type agents are very responsive to changes in s, then reallocations

that reinforce existing segregation will tend to lower average outcomes.

To highlight the structure of βlsoe, and connect it to theoretical work on neighborhood

sorting, it is helpful to consider the decomposition

βlsoe = αlppe + αlepe,
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where

αlppe = πκC (p (Si) , Si| dκ (Si) = 1) , αlepe = πκC (e (Si) , Si| dκ (Si) = 1) .

Under the current setup, local reallocations may alter population average outcomes for

two distinct reasons. First, peer quality changes for those individuals who change groups

as part of the reallocation, called ‘movers’. This is an internalizeable or private peer effect.

Second, peer quality changes for those individuals who do not switch groups as part of the

reallocation, called ‘stayers’, we call this the external peer effect.

First, consider the private peer effect. If the benefits of improved peer quality for high

type movers entering groups with an initially above average fraction of high types exceed

the costs for low type movers leaving such groups, then implementing (8) will tend to raise

the average achievement of movers. Observe that the private peer effect will be zero when

outcomes are separable in own and peer types (as is often assumed in empirical work),

positive when they are complementary (as is typically assumed in theoretical work on sorting)

and negative when they are substitutable. The sign of the private effect on average outcomes

is captured by αlppe. Positivity of αlppe suggests the presence of private incentives for further,

segregating-increasing, sorting.

Second consider the external peer effect. This term captures changes in average outcomes

operating through the reallocation’s effect on average spillover strength. If the marginal

benefit of an additional high type on stayers is greater in groups with a large fraction of

high types (i.e., αlepe > 0), then increased segregation will raise average outcomes by raising

average spillover strength. This term is only non-zero in the presence of some form of social

spillover. The sign of αlepe determines the direction of the external effect associated with

implementing (8). This effect is not internalized by individuals as they negotiate switches in

group membership.

The next theorem makes the above statements more precise and explicitly connects βlsoe

to the theoretical work on segregation and efficiency done by de Bartolome (1990), Benabou

(1993, 1996), Becker and Murphy (2000) and others.

Theorem 3.1. Under Assumptions 2.1 to 2.6 βlsoe = αlppe + αlepe with (i)

αlppe = πκV (Si| dκ (Si) = 1)× E [ω(Si) {∇smH (Si)−∇smL (Si)}| dκ (Si) = 1]

αlepe = πκV (Si| dκ (Si) = 1)

× E [ω(Si) {∇smH (Si)−∇smL (Si) + Si∇ssmH (Si) + (1− Si)∇ssmL (Si)}| dκ (Si) = 1]] ,
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where E [ω(Si)] = 1 with

ω (s) =
1

fS|dκ(S) (s| dκ (Si) = 1)

×
E [Si − pH,κ|Si > s, dκ (Si) = 1]

(
1− FS|dκ(S) (s| dκ (Si) = 1)

)∫ v=1

v=0
E [Si − pH,κ|Si > v, dκ (Si) = 1]

(
1− FS|dκ(S) (v| dκ (Si) = 1)

)
dv
,

and (ii) the averages αlppe and αlepe give maximal weight to values at S = pH,κ and minimal

weight to those at S = s+ κ and S = s− κ.

Proof See Appendix B.

Theorem 3.1 provides a mathematical representation of the private and external effects

discussed above. Theorem 3.1 implies that a small increase in segregation raises average

outcomes if

2E [ω(Si) {∇smH (Si)−∇smL (Si)}| dκ (Si) = 1] (11)

+ E [ω(Si) {Si∇ssmH (Si) + (1− Si)∇ssmL (Si)}| dκ (Si) = 1]

is greater than zero. The two terms in the above expression, to use the language of Benabou

(1996), are respectively weighted averages of the degree of complementarity and curvature.

They are local statistical analogs of identically named global deterministic objects discussed

by Benabou (1996), Fernández (2003) and others.

Theoretical work has generally assumed that ∇smH (s)−∇smL (s) > 0 for all s ∈ (0, 1)

or that own and peers’ type are global complements. Global complementarity ensures that

high type residents will always benefit more from improvements in peer quality than their

low type neighbors. While the empirical evidence for such a strong form of complementarity

is mixed, theoretical work nevertheless takes it as a primitive since it induces equilibrium

stratification.17

Theorem 3.1 indicates that a measure of local average complementarity,

E [ω (Si) {∇smH (Si)−∇smL (Si)}| dκ (Si) = 1] ,

is important for determining whether small increases in segregation raise the average out-

come. If, in the neighborhood of s = pH,κ, own and peers’ type tend to be complementary,

then the first term in (11) will be positive. This is a ‘force’ in favor of a local increases

in segregation being outcome-raising. It is also suggestive of the existence of incentives for

17If the marginal benefit of an additional high type is greater for high types than it is for low types, then
high types will be willing to pay more to live in high quality neighborhoods in equilibrium
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further segregation relative to the status quo.

The theory literature also discusses the importance of curvature for determining whether

segregation is outcome-maximizing. Curvature, equal to s∇ssmH (s) + (1− s)∇ssmL (s),

determines whether there are diminishing returns to peer quality at the neighborhood level.

Theoretical work emphasizes the case where curvature is such that 2 {∇smH (s)−∇smL (s)}
+ s∇ssmH (s) + (1− s)∇ssmL (s) is negative for all s ∈ S (i.e., global concavity of m (s) in

group composition). In that case complementarity of own and peer quality induces equilib-

rium segregation, but such segregation is inefficient in the sense that it does not maximize

average outcomes (see Benabou, 1996, Proposition 7). In such a situation, within a neigh-

borhood high types always benefit more from improvements in peer quality than do low

types, while across neighborhoods areas with few high types benefit more from increases in

peer quality than do areas with many high types. This situation, where the private and

social incentives for sorting are misaligned has been emphasized by Benabou (1993, 1996)

and others.

Theorem 3.1 indicates that a measure of local average curvature,

E [ω (Si) {Si∇ssmH (Si) + (1− Si)∇ssmL (Si)}| dκ (Si) = 1] ,

is important for determining whether segregation is outcome raising in the current context

as well. If, again in the neighborhood of s = pH,κ, the marginal benefit of an additional high

type peer tends to decline more with s for high relative to low types, then the second term

in (11) will be negative.

To summarize Theorem 3.1 indicates that the average outcome effects of small increases

in segregation depend on the relative magnitudes of local average complementarity and local

average curvaturve. These are statistical analogs of well-known deterministic objects from the

multi-community models literature. The novelty here, besides the introduction of statistical

content, is that the interpretation of βlsoe does not depend on a priori restrictions on m (s).

The cost of such flexibility is that βlsoe provides only local information about the relative

average outcome effects of segregation versus integration.

The LSOE provides an indication of the likely effects of small increases in segregation

on average outcomes. A longstanding concern of the literature on segregation, however,

is the potential for an equity versus efficiency trade-off. Even if increases in segregation

raise average outcomes, such efficiency gains may be unacceptable if they increase inequality

across groups. On the other hand, reallocations which both reduce inter-type inequality and

raise average outcomes are especially compelling.

Our next estimand measures the sign of the change in the high-low outcome gap associ-
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ated with a segregation-increasing reallocation. This object, the local segregation inequality

effect (LSIE), along with the LSOE defined above, allows one to test for the presence of a

local equity-efficiency trade-off.

The average outcome of a high type individual under the status quo is given by, using

iterated expectations,

E [mH (Si)|Ti = 1] = E
[
TimH (Si)

pH

]
= E

[
Si

pH
mH (Si)

]
,

with a similar expression holding for low types. Therefore, after reallocation the high-low

outcome gap is given by

E
[
Sr
i

pH
mH (Sr

i )

]
− E

[
1− Sr

i

1− pH
mL (S

r
i )

]
=

E
[
(Si + λdκ (Si) (Si − pH,κ))

pH
mH (Si + λdκ (Si) (Si − pH,κ))

]
− E

[
(1− Si − λdκ (Si) (Si − pH,κ))

1− pH
mL (Si + λdκ (Si) (Si − pH,κ))

]
.

Differentiating with respect to λ and evaluating at λ = 0 gives a local segregation inequality

effect of, or the sign of the reallocation’s effect on the high versus low type average outcome

gap equal to,

βlsie = E
[
dκ (Si)

pH
{mH (Si) + Si∇smH (Si)} (Si − pH,κ)

]
(12)

− E
[
dκ (Si)

1− pH
{−mL (Si) + (1− Si)∇smL (Si)} (Si − pH,κ)

]
.

4 Estimation

Our approach to estimation of βase, βlsoe and βlsie involves forming sample analogs of the

right-hand-sides of, respectively, (6), (10) and (12) above. In order to do this we must

replace mH (s) , mL (s) and/or their derivatives with estimates (along with replacing pH,κ

and, for the case of βlsie, pH with estimates). We propose to use kernel smoothing methods

to estimate each of these objects.

Let K (u) denote a kernel function that integrates to one and satisfies other conditions.

Define Kb(s− Si) = b−1K((s− Si)/b). Our estimates of mH (s) and mL (s) are given by

m̂H (s) =
ĝ1H (s)

ĝ2H (s)
, m̂L (s) =

ĝ1L (s)

ĝ2L (s)
(13)
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where

ĝ1H(s) =
1

I1

I1∑
i=1

Kb(s− Si)Yi, ĝ1L(s) =
1

I0

I∑
i=I1+1

Kb(s− Si)Yi,

ĝ2H(s) =
1

I1

I1∑
i=1

Kb(s− Si), ĝ2L(s) =
1

I0

I∑
i=I1+1

Kb(s− Si).

We assume that the sample is ordered so that the I1 high types appear first followed by the

I0 = I − I1 low types.

We estimate the derivatives of mH (s) and mL (s) by the derivatives of their estimates:

∇sm̂H (s) =
1

ĝ2H (s)
[∇sĝ1H (s)−∇sĝ2H (s) m̂H (s)] (14)

∇sm̂L (s) =
1

ĝ2L (s)
[∇sĝ1L (s)−∇sĝ2L (s) m̂L (s)] .

Finally we estimate pH,κ and pH by

p̂H,κ =
1
I

∑I
i=1 dκ (Si)Ti

1
I

∑I
i=1 dκ (Si)

, p̂H =
1

I

I∑
i=1

Ti. (15)

We begin by describing our average spillover effect estimator, which is

β̂ase =
1

I

I∑
i=1

dκ (Si) {Si∇sm̂H (Si) + (1− Si)∇sm̂L (Si)} .

The next proposition characterizes the large sample properties of β̂ase.

Proposition 4.1. Under regularity conditions β̂ase is
√
C consistent with an asymptotic

sampling distribution of

√
C
(
β̂ase − βase

)
D→ N

(
0,E

[
ϕ̃cϕ̃c

])
,

where, ϕ̃c =
∑

i∈{i:Gi=c}
ϕ (Zi) , and ϕ (Zi), the efficient influence function, is given by

ϕ (Zi) =
dκ (Si)

N

{
e (Si)− βase − ∇sfS (Si)

fS (Si)
(Yi −m (Si))

−
([

TiYi
Si

− (1− Ti)Yi
1− Si

]
− [mH (Si)−mL (Si)]

)}
.
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Proof See the Supplemental Web Appendix.

Observe that the asymptotic variance formula β̂ase is of the ‘clustered’ variety. Indepen-

dence of outcomes holds across groups but not within them due to the presence of unobserved

locational heterogeneity, Uc.
18 The form of the influence function is also instructive. The

first term would be the influence function if e (s) we known. The second two terms therefore

capture the effects of first-step nonparametric estimation of e (s) . Of these two terms the

first is identical to the correction term associated with semiparametric average derivative

estimation (e.g., Härdle and Stoker, 1989; Powell et al., 1989; Newey and McFadden, 1994).

This follows from re-expressing the estimand as the difference

βase = E [dκ (Si)∇sm (Si)]− E [dκ (Si) {mH (Si)−mL (Si)}] .

Thus the first of the two correction terms captures the sampling uncertainty from having to

estimate ∇sm (Si), while the second is due to sampling error in the estimate of the difference

mH (Si)−mL (Si) .

The Supplemental Web Appendix derives the form of ϕ (Zi) using the methods described

by Newey (1994a). It does not provide primitive conditions for
√
C consistency and asymp-

totic normality. This can be done along the lines of Newey and McFadden (1994, Section 8).

Here we make only a few comments that are particular to our problem. First, the weight

function dκ (Si) serves two distinct purposes. First, it ensures that the product dκ (s) fS (s)

is zero on the boundary of the support of S. The pathwise derivative calculations in the

Supplemental Web Appendix make clear that such a condition is required for the semipara-

metric variance bound to be finite. Analogous weight functions play a similar role in average

derivative estimation as elegantly explained in Newey and Stoker (1994, p. 1206). A second

concern is boundary bias in our first step estimates ∇sm̂H (s) and ∇sm̂L (s). Eliminating

such bias is required for the remainder term from linearization (of our second step moment)

to be small. The dκ (s) weight effectively eliminates this problem by requiring us to only

estimate ∇sm̂H (s) and ∇sm̂L (s) on the interior of the support of S. As is usual in semi-

parametric estimation, higher order kernels are required for bias reduction, although the use

of such kernels in practice may be ill-advised.

Estimation of βlsoe parallels that of βase. Using the first step estimates defined in (13),

(14) and (15) above we form the sample analog of (10):

β̂lsoe =
1

I

I∑
i=1

dκ (Si) [m̂H (S)− m̂L (Si) + Si∇sm̂H (Si) + (1− Si)∇sm̂L (Si, )] (Si − p̂H,κ) .

18Newey (1994a, p. 1367) notes that dependence of this type does not affect the form of the efficient
influence function.
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Proposition 4.2. Under regularity conditions β̂lsoe is
√
C consistent with an asymptotic

sampling distribution of

√
C
(
β̂lsoe − βlsoe

)
D→ N

(
0,E

[
ϕ̃cϕ̃c

])
,

where, ϕ̃c =
∑

i∈{i:Gi=c}
ϕ (Zi) , and ϕ (Zi), the efficient influence function, is given by

ϕ (Zi) =
dκ (Si)

N

{
∇sm (Si) (Si − pH,κ)− βlsoe

− ∇sfS (Si)

fS (Si)
(Yi −m (Si)) (Si − pH,κ)− dκ (Si) [Yi −m (Si)]

−E [∇sm (Si)| dκ (Si) = 1] (Ti − pH,κ)} .

Proof See the Supplemental Web Appendix.

As discussed in Section 3 above it is interesting to decompose βlsoe into is private (mover),

αlppe, and spillover (stayer) components, αlepe. These components may be estimated by

α̂lppe =
1

I

I∑
i=1

dκ (Si) [m̂H (Si)− m̂L (Si)] (Si − p̂H,κ)

α̂lepe =
1

I

I∑
i=1

dκ (Si) [Si∇sm̂H (Si) + (1− Si)∇sm̂L (Si)] (Si − p̂H,κ) .

The next two propositions characterizes the large sample properties of these estimators.

Proposition 4.3. Under regularity conditions α̂lppe is
√
C consistent with an asymptotic

sampling distribution of

√
C
(
α̂lppe − αlppe

) D→ N
(
0,E

[
ϕ̃cϕ̃c

])
,

where, ϕ̃c =
∑

i∈{i:Gi=c}
ϕ (Zi) , and ϕ (Zi), the efficient influence function, is given by

ϕ (Zi) =
dκ (Si)

N

{
p (Si) (Si − pH,κ)− αlppe

+

{(
Ti
Si

)
Yi −mH (S)

}
(Si − pH,κ)−

{(
1− Ti
1− Si

)
Yi −mL (Si)

}
(Si − pH,κ)

−E [p (Si)| dκ (Si) = 1] (Ti − pH,κ)} .

Proof See the Supplemental Web Appendix.
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Proposition 4.4. Under regularity conditions α̂lepe is
√
C consistent with an asymptotic

sampling distribution of

√
C
(
α̂lepe − αlepe

) D→ N
(
0,E

[
ϕ̃cϕ̃c

])
,

where, ϕ̃c =
∑

i∈{i:Gi=c}
ϕ (Zi) , and ϕ (Zi), the efficient influence function, is given by

ϕ (Zi) =
dκ (Si)

N

{
e (Si) (Si − pH)− αlepe

− ∇sfS (Si)

fS (Si)
(Yi −m (Si)) (Si − pH,κ)− [Yi −m (Si)]

−
{(

Ti
Si

)
Yi −mH (Si)

}
(Si − pH,κ) +

{(
1− Ti
1− Si

)
Yi −mL (Si)

}
(Si − pH,κ)

−E [e (Si)| dκ (Si) = 1] (Ti − pH,κ)} .

Proof See the Supplemental Web Appendix.

Note that the sum of the influence functions for α̂lppe and α̂lepe equal that of β̂lsoe.

Finally our estimate of βlise, the effect of a small increase in segregation on the high-low

outcome gap, is given by

β̂lise =
1

I

I∑
i=1

dκ (Si)

p̂H
{m̂H (Si) + Si∇sm̂H (Si)} (Si − p̂H,κ)

− 1

I

I∑
i=1

dκ (Si)

1− p̂H
{−m̂L (Si) + (1− Si)∇sm̂L (Si)} (Si − p̂H,κ) .

Proposition 4.5. Under regularity conditions β̂lise is
√
C consistent with an asymptotic

sampling distribution of

√
C
(
β̂lise − βlise

)
D→ N

(
0,E

[
ϕ̃cϕ̃c

])
,
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where, ϕ̃c =
∑

i∈{i:Gi=c}
ϕ (Zi) , and ϕ (Zi), the efficient influence function, is given by

ϕ (Zi) =
dκ (Si)

N

{
1

pH
{mH (Si) + Si∇smH (Si)} (Si − pH,κ)

− 1

1− pH
{−mL (Si) + (1− Si)∇smL (Si)} (Si − pH,κ)− βlise

− 1

pH,κ

∇sfS (Si)

fS (Si)
(TiYi − SimH (Si)) (Si − pH,κ)

+
1

1− pH,κ

∇sfS (Si)

fS (Si)
((1− Ti)Yi − (1− Si)mL (Si)) (Si − pH,κ)

− 1

pH,κ

(TiYi − SimH (Si)) +
1

1− pH,κ

((1− Ti)Yi − (1− Si)mL (Si))

− 1

pH,κ

E
[
S

pH,κ

[mH (S) + S∇smH (S)]

∣∣∣∣ dκ (Si) = 1

]
(Ti − pH,κ)

+
1

1− pH,κ

E
[

1− S

1− pH,κ

[−mL (S) + (1− S)∇smL (S)]

∣∣∣∣ dκ (Si) = 1

]
(Ti − pH,κ)

}
.

Proof See the Supplemental Web Appendix.

5 Incorporating additional covariates

The identification and estimation results presented so far maintain strong assumptions on

the form of the status quo assignment. In this section we briefly discuss how the availability

of individual- and location-level covariates may be used to accommodate richer patterns

of matching and sorting in the status quo. Let Wi and Xc respectively denote vectors of

observed individual- and location-level covariates (e.g., student and teacher characteristics

or class size). We replace Assumptions 2.3 and 2.4 with the conditional analogs:

Assumption 5.1. (Inclusive Definition of Type) Ti ⊥ Ai|Wi, Xi.

Assumption 5.2. (No Matching and Sorting On Unobservables)

(T i, Ai) ⊥ Ui|W i, Xi, (T p(i),W p(i), Ap(i)) ⊥ Ai

∣∣Ti,Wi, Xi.

Assumption 5.1 establishes a different normalization for unobserved ability: we now

conceptualize ‘ability’ as one’s rank within the subpopulation of individuals homogenous in

type, Ti, other observed individual attributes, Wi, and observed location characteristics, Xi.

Assumption 5.2 substantively weakens the requirements placed on the status quo allo-

cation. The first part of the assumption implies that location-specific unobservables, Uc,
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vary independently of the type and ability structure of a group (Ac, T c). This independence,

however, now needs to hold only conditionally (on group members’ observed characteris-

tics, W c, and location-specific characteristics, Xc). This assumption rules out matching on

unobservables, whereby groups with particular type and ability structures are able to system-

atically secure locations with particular unobserved characteristics. It does allow observed

group member and location attributes (i.e., W c and Xc) to covary with unobserved location

quality. That is, it allows agents to match on observables.

The second part of the assumption implies that conditional on own- and location-specific

observables each agent’s ability is independent of the abilities, types and other characteristics

of their peers. Conditional on own observed characteristics, individuals with higher ability,

for example, are not able to sort into groups with peers of above average ability. Importantly,

this assumption does allow for sorting on observables. For example, high type individuals

may be more likely to co-locate with other high types and, similarly, Wi may covary with

W p(i).

One way to ensure the satisfaction of Assumption 5.2 is to adopt the following assignment

scheme. The planner begins by choosing a feasible joint distribution for (T c,W c, Xc). Second,

the planner forms classrooms with specific gender (T c) and socioeconomic configurations

(W c). These classes must obey the constraints imposed by the joint distribution of Ti and

Wi in the population. Third, the planner assigns each class configuration to a certain type

of teacher, defined in terms of their value for Xc (e.g., a measure of teaching experience).

Fourth, to fill a Ti = t and Wi = w slot the planner draws a student at random from that

subpopulation. To fill an Xc = x teaching slot, the planner draws a teacher at random from

that subpopulation.19 Assumption 5.2 is also consistent with endogenous group formation

under particular (and strong) informational structures (see Heckman and Vytlacil, 2007a,b).

Assumption 5.2 allows for richer assignment patterns. For example, blacks in predomi-

nately black classrooms may be poorer (i.e., more likely to be eligible for free or reduced price

school lunch), than blacks in predominately white classrooms. Observed measures of teacher

quality may also vary with class composition. Hence, it be that teachers in predominately

minority classrooms are less experienced.

Adapting the argument used in the proof to Proposition 2.1 (see Appendix B) we can

show that Assumptions 5.1 and 5.2 yield the density factorization:

fA,U |T ,W,X(ac, uc|tc, wc, xc) =

{
Nc∏
j=1

fA(acj|wcj, xc)

}
fU(uc|wc, xc),

19This scheme approximates that used by the Berkeley Unified School District for elementary school
enrollment.
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so that the regression function

E [Yi|Ti = 1, Si = s,W i = w,Xi = x] = gH (s, w, x) , (16)

gives the expected outcome for a high type individual with observed characteristic Wi = w,

given exogenous assignment to a group of composition S = s with observed peer and location

characteristics W p(i) = wp(i) and Xi = x. The proxy variable regression function for low

types, gL (s, w, x), is analogously defined.

The reallocation estimands defined in Section 3 remain valid after replacing mH (s) and

mL (s) with gH (s, w, x) and gL (s, w, x). The influence functions given in Section 4 remain

valid after replacing mH (s) and mL (s) with gH (s, w, x) and gL (s, w, x) and fS (s) with

fS,W,X (s, w, x).

Integrating over (wc, xc) and invoking Assumptions 5.1 and 2.3 yields∫ ∫
. . .

∫
fA,U |T ,W,X(ac, uc|tc, wc, xc)fW,X(wc, xc)dwc1, . . . , dwcNdxc

=

∫ ∫
. . .

∫ {
Nc∏
j=1

fA(acj|wcj, xc)

}
fU(uc|wc, xc)fW,X(wc, xc)dwc1, . . . , dwcNdxc

=

{
Nc∏
j=1

fA(acj)

}
fU(uc),

so that we can recover mH (s) directly by the partial mean

mH (s) = EW,X [E [Yi|Ti = 1, Si = s,W i, Xi]]

under appropriate support conditions and similarly for mL (s) .

6 The social planner’s problem

In this section we characterize the structure of average outcome maximizing assignments of

individuals to groups. We allow group size to vary, but only consider reallocations which

leave the marginal distribution of group-size fixed. Let group size Nc ∈ {n1, . . . , nJ} with

τj = Pr (Nc = nj) ; the class of reallocations we study is completely characterized by the

j = 1, . . . , J conditional group-composition cumulative distribution functions: FS|N (s|nj).

The social planner’s problem is thus a functional (i.e., infinite-dimensional) optimization one.

Such problems are typically quite difficult to solve, standard mathematical programming

results being inapplicable.
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In our case we show, by exploiting the special structure of the planner’s problem and the

feasibility constraint, that a direct solution is available, easily characterized and computation-

ally feasible. This result allows us to identify the maximum average outcome level available

via reallocation. A comparison of the maximum average outcome with that observed under

the status quo provides a measure of efficiency of the status quo (see Bhattacharya, 2009).

Analysis of the planner’s problem also provides insight into the interaction of the produc-

tion technology and resource constraint (i.e., the fraction of high types in the population)

in determining the optimal allocation. Below we provide examples where, holding technol-

ogy fixed, the optimal allocation is either integrating or segregating depending on the type

structure of the population. This highlights the danger of informally inferring the optimal-

ity of segregation versus integration by inspection of the production technology alone (as is

common in practice).

We assume that the planner knows the mean allocation response function, m (s, n), the

status quo assignment, F sq
S,N (s, n) , and the population fraction of high types, pH . Her

problem is to choose an allocation which maximizes expected average outcomes:

max
FS|N ( ·|n1),...,FS|N ( ·|nJ )

J∑
j=1

[
nj

µN

∫
m (s, nj) fS|N (s|nj) ds

]
τj (17)

subject to the restriction

J∑
j=1

nj

µN

[∫
sfS|N (s|nj) ds

]
τj = pH , (18)

with µN = E [Ni] . Weighting by nj/µN ensures that the planner maximizes average individ-

ual outcomes (and not the average of mean group outcomes).

Our characterization of the solution to (17) involves two steps. First, we solve a sim-

plified problem. In the simplified problem all groups are of the same size. In this case the

only observable dimension distinguishing groups is their composition. We show that the

optimizing planner chooses the allocation, F ∗
S (s), in a way that implicitly ‘concavifies’ the

mean allocation response function, m (s) (we suppress the n argument when discussing the

simplified problem). One intuition for our result follows from the observation that an op-

timizing planner behaves similarly to that of a cost minimizing producer facing (possibly)

nonconvex isoquants (McFadden, 1978).

Second, using our first step result we show that the original problem can be broken

into two simple steps. Let σj denote the fraction of high types in the subpopulation of

individuals assigned to groups of size nj (as part of a candidate reallocation). Conditional on
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choosing such an allocation, the optimal conditional allocations FS|N (s|n1) , . . . , FS|N (s|nJ)

are determined by our first result. Since σj =
∫
sfS|N (s|nj) ds we can re-write the feasibility

constraint (18) as
J∑

j=1

nj

µN

σjτ
sq
l = pH ,

and hence show that the original problem is equivalent to a finite-dimensional optimization

problem where the planner chooses the vector σ = (σ1, . . . , σJ)
′. Furthermore we show that

the equivalent problem is a concave one and hence that the Kuhn-Tucker conditions are

both necessary and sufficient. This allows us to provide a fairly complete characterization

of the planner’s problem. Numerical computation of an outcome maximizing allocation is

straightforward. We can therefore estimate the maximum attainable average outcome. A

similar argument can be used to characterize the problem of minimizing expected average

outcomes.

The concave envelope of m (s, n) plays an important role in our argument. The following

definition, adapted from Horst et al. (2000), defines this object.

Definition 6.1. Let m : S → R1 be a continuous function with S = [s, s] (a convex set

in R1), then the concave envelope of m (s) taken over S is a function M (s) such that

(i) M (s) is concave on S, (ii) M (s) ≥ m (s) for all s ∈ S, (iii) if h (s) is any concave

function defined on S such that h (s) ≥ m (s) for all s ∈ S, then h (s) ≥M (s) for all s ∈ S.

FormallyM (s) is the function whose truncated lower epigraph coincides with the convex

hull of the truncated lower epigraph of m (s) (see Rockafellar, 1970). Intuitively it is the

uniformly best concave overestimator of m (s) .

We begin by considering the planner’s problem when all groups are equally-sized. Out-

come maximizing allocations in that setting are characterized by the following theorem.

Theorem 6.1. Consider the problem

max
FS(·)∈ΓS

∫
m (s) fS (s) ds, s.t.

∫
sfS (s) ds = pH , (19)

where s ∈ S = [s, s] with s ≥ 0, s ≤ 1, ΓS is the space of all probability measures on S, and
pH = E [Ti] , then, with F

∗
S (·) denoting a solution to (19),∫

m (s) f ∗
S (s) ds =M (pH) (20)
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Figure 1: Optimal allocations for different m (s) and pH
NOTES: Each panel plots a different expected allocation response function, m (s) (solid
dark line). The concave envelopes of these expected allocation response functions, M (s) ,
are given by the dashed lines at or above m (s) . The vertical dashed lines indicate the
population frequency of high types, pH . For figures with two such lines the second line (i.e.,
the right-most line) gives the location of a second population frequency, p′H . The point labeled
A marks the location of (pH ,M (pH)). The points labeled B and C mark the locations of,
respectively, (sL,m (sL)) and (sU ,m (sU)) (when sL ̸= sU). The point labeled A′, if present,
marks the location of (p′H ,M (p′H)).
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and

F ∗
S (s) = (1− π)1 (s ≥ sL) + π1 (s ≥ sU) , π =

{
pH−sL
sU−sL

sL < sU

1/2 sL = sU
(21)

where

sL = max {s : s ≥ s, s ≤ pH , M (s) = m (s)} , sU = min {s : s ≤ s, s ≥ pH , M (s) = m (s)} .

Proof See Appendix B.

Theorem 6.1 shows that an outcome maximizing allocation may be constructed by a group

composition density with just two mass points. The location of these mass points coincide

with the s-axis values of the first extreme points to the ‘right’ and left’ of (pH ,M (pH)) . To

see why this is the case it is helpful to examine some examples in detail.20 Figure 1 plots

four different forms for m (s). Consider Panel A of the figure. In that panel m (s) is globally

convex. The concave envelope of m (s) is equal to the straight line passing through the

points B, A and C. The vertical dashed line in this figure depicts the population frequency

of high types, pH . If ‘production’ on M (s) , the concave envelope of m (s), were feasible,

then, by Jensen’s inequality, an optimal allocating would clearly be integrating: all groups

would have a fraction of high types equal to pH . While this is not possible, this same average

outcome is achievable by a segregating allocation with groups of all low or high types. In

Panel B of the figure, m (s) is globally concave. In that case m (s) and its concave envelope

M (s) coincide such that the integrated allocation maximizes average outcomes. These two

cases correspond to those emphasized in the multi-community models literature.

Panels C and D depict more complicated examples. In Panel C m (s) has both concave

and convex regions. If pH = 0.2, shown by the left-most vertical dashed line in the figure,

then the social planner will form some groups with no high types (point B in the figure)

and some partially integrated groups (point C in the figure). The proportion of each type

of groups is determined by the feasibility constraint. This example illustrates the key idea

of the theorem: because groups can be formed with different proportions of high types, the

output level M (pH) is attainable. Since M (s) ≥ m (s) for all s ∈ [0, 1] and is concave it

follows that M (pH) equals the maximal attainable average outcome level. Mathematically

the result follows from that fact that any point on the convex hull of a set of points can be

represented as a linear combination of extreme points on the hull.

Panel C highlights a second feature of our problem. As discussed above, when pH = 0.2

(left-most vertical dashed line), M (pH) ≥ m (pH) so that the social planner will choose a

20We thank Emmanuel Saez for providing some of these examples. His intuitive insight was key for being
able to formulate the proof of Theorem 6.1.
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segregating allocation. In contrast when pH = 0.8 (right-most vertical dashed line)M (pH) =

m (pH) so that the social planner will choose a perfectly integrated allocation. This provides

a simple, albeit stylized, example of how knowledge of the production technology alone is not

sufficient for solving the planner’s problem. Panel D gives a further example of an average

outcome response function with both convex and concave portions.

The solution to the original social planner’s problem is characterized by the following

corollary to Theorem 6.1.

Corollary 6.1. A solution to the social planner’s problem defined by (17) and (18) is given

by

F ∗
S|N (s|nj) = [1− π (σj)]1 (s ≥ sL (σj)) + π (σj)1 (s ≥ sU (σj))

where

π (σj) =

{
σj−sL(σj)

sU (σj)−sL(σj)
sL (σj) < sU (σj)

1/2 sL (σj) = sU (σj)

for j = 1, . . . , J and

sL (σj) = max {s : s ≥ s, s ≤ σj, M (s, nj) = m (s, nj)}

sU (σj) = min {s : s ≤ s, s ≥ σj, M (s, nj) = m (s, nj)} ,

with M (s, nj) the concave envelope of m (s, nj) on s ∈ S and σ1, . . . , σJ the solution to the

concave programming problem

max
σ1∈S,...,σJ∈S

J∑
j=1

nj

µN

M (σj, nj) τj, s.t.
J∑

j=1

nj

µN

σjτj = pH . (22)

Proof See Appendix B.

Corollary 6.1 provides a simple algorithm for calculating the maximum attainable average

outcome available via reallocation. First, compute M (s, nj) for each of the J group sizes.

Second, solve the concave program (22). Third, compute the value of
∑J

j=1
nj

µN
M (σj, nj) τj

at the solution.

Our final identification result follows directly:

Proposition 6.1. If (i) Assumptions 2.1 to 2.6 hold and (ii) f sq
S|N (s|nj) > 0 for all s ∈ S

and j = 1, . . . , J, then (a) F ∗
S|N (s|nj) is identified and (b) so is the efficiency measure

βesq =
J∑

j=1

[
nj

µN

∫
m (s, nj) f

∗
S|N (s|nj) ds

]
τj − E [Y ] .

36



The efficiency of the status quo measure (ESQ), βesq, equals the maximum average out-

come gain, relative to the status quo, available via reallocation.

7 Empirical illustration

Here we apply our methods to an analysis of classroom gender composition on student

achievement. The data were collected as part of a randomized study of the effects of class

size on student performance (Project STAR). They have been previously analyzed by, among

others, Whitmore (2005), Krueger and Whitmore (2001) and Graham (2008). The study

involved randomized assignment of both teachers and students to classrooms, a design feature

important to our analysis. We focus on the question of the effect of segregation by sex in

classrooms.

We have information on 5,781 kindergarten students in 325 classrooms (on average 18

per class). We focus on math achievement as the outcome, normalized to have zero mean

and unit variance. The average test score for girls is 0.08 and -0.08 for boys. Girls make up

49% of the sample. Figure 2 presents average achievement scores, averaged over all children

in the class, as a function of the proportion of girls in the class. There is a clear upward

slope in the regression function, implying that, on average, classes with more girls perform

better than classes with few girls. The apparent nonlinearity of the curve is also suggestive

of spillover effects. The second panel in the figure presents a histogram of the proportion of

girls in the 325 classrooms, ranging from 0.28 to almost 0.80.

Figure 3 presents estimates of mH(s) and mL(s) (the regression functions for girls and

boys respectively) separately. The estimation procedure is as described in Section 4 above

with the modifications needed for the presence of additional observables implemented as

described in Section 5. Other particulars of the estimation procedure are detailed in the

notes to the tables and figures.

These nonparametric estimates underlie our estimates of the reallocation effects studied

above. In Table 1 we present estimates of our various estimands. In Panel A we present

the preferred nonparametric estimates. In the first row the results for the average spillover

effect βase are reported. The estimates suggest that, on average (averaged over both girls and

boys), kids benefit from having more girls in the class. This provides strong, nonparametric,

evidence of peer spillovers from gender composition (see Whitmore, 2005). The next row

of estimates gives the local segregation outcome effect, βlsoe. It shows that, although on

average kids benefit from having more girls as classmates, reallocating students to make

classes slightly more segregrated by sex would not change average outcomes much. Girls

would benefit from such segregation, but boys would suffer to approximately the same extent.
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Figure 2: Average math achievement and classroom gender composition, Project STAR
Kindergarten Students

Notes: The left-hand-side of the figure plots kernel partial mean estimates of m (s) =
E [sgH (s,W i, Xi) + (1− s) gL (s,W i, Xi)] where W i is empty and Xi includes total school
enrollment, fraction female in the school, and class size. A multivariate standard normal
kernel was used with a bandwidth matrix proportional to the covariance matrix of the re-
gressors. The degree of proportionality was chosen by leave-own-school-out cross-validation.
The dashed lines are pointwise 90 percent confidence intervals calculated using the approach
of Newey (1994b) (modified to allow for within-school dependence across observations). Units
attending schools with enrollments below 50 or above 150 and/or those in schools with frac-
tion female below 0.35 or above 0.65 were trimmed when forming the partial mean (about 9
percent of the students). Valid test scores, standardized to be mean zero with unit variance,
were available for I = 5, 871 students in C = 325 classrooms located across 79 different
schools. The right-hand-side of the figure plots a histogram of peer composition at the
individual level.
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Figure 3: Average math achievement by gender and classroom gender composition, Project
STAR Kindergarten Students

Notes: The figure plots kernel partial mean estimates of mH (s) = E [gH (s,W i, Xi)] and
mL (s) = E [gL (s,W i, Xi)]. Bandwidths, regressors, trimming and confidence intervals are
as described in the notes to Figure 2. A total of 2,857 students are used to compute the
girls’ figure and 3014 students for the boys’ figure.
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The latter is shown directly by the last estimand, the local segregation inequality effect, βlsie.

Increasing segregation by a small amount increases the average test score difference between

girls and (lower performing) boys. Because the average effect of additional segregation on

outcomes is close to zero, it is not surprising that breaking this down into a private and

public component βlppe and βlepe does not show much of an effect either.

The last two columns of the table present estimates based on parametric models. The

first of these is the widely used linear-in-means model. In this model the effect of the class

composition is identical for all children. As a result the reallocation effects, βlsoe, βlppe and

βlepe are constrained to equal zero. Although consistent with our nonparametric estimates,

the linear-in-means estimate of the average spillover effect is considerably larger. The same

holds for the second parametric model that allows the for heterogeneity in peer effects by

type (e.g., Angrist and Lang, 2004).

Taking the partial mean estimates of the conditional means mH(s) and mL(s) as given,

we can informally solve the social planner’s problem discussed in Section 5. Because we

have no classrooms in the sample with very small or large fractions of girls, we restrict the

allowable allocations to those with fractions girls in the range [0.3, 0.7]. Inspection of Figure

2 suggests that average math achievement will be maximized when approximately two thirds

of classrooms are 40% girls and 60% boys, and the remaining one third of classrooms 70%

girls and 30% boys (as segregrated as allowed).21 This would raise average test scores by

about 0.04 standard deviations relative to the status quo.

8 Summary

In this paper we have developed a unified framework for the analysis of the effects of seg-

regation in the presence of social spillovers. We provide nonparametric identification and

estimation results for our proposed estimands when matching and sorting is on observables

alone. We also explore features of the social planner’s problem and illustrate our methods

by studying the effects of sex segregation in kindergarten classrooms.

Several areas potentially merit further study. The approach taken in this paper has been

to leave mH (s) and mL (s) nonparametric. The price for this flexibility is that our identi-

fication and estimation procedures require strong conditions on the status quo assignment

mechanism. It would be interesting to explore whether the imposition of various a priori

restrictions on mH (s) and mL (s) might facilitate the development of positive identification

results under less stringent restrictions on the status quo (c.f., Nesheim, 2002; Epple et al.,

2010). An exploration of partially identifying assumptions, as done by Manski (2013) in a

21For simplicity we assume that all classes have the average number of students (about 18).
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Table 1: Nonparametric and parametric estimates of spillover strength and reallocation
effects (math achievement, Project STAR Kindergarten Students)

Panel A: Nonparametric Panel B: Parametric
Linear-in-Means Type-Specific

(1) (2) (3) (4) Linear-in-Means

βase 0.2273
(0.1432)

0.2600
(0.1352)

0.3065
(0.1345)

0.3469
(0.1341)

0.4433
(0.1995)

0.4728
(0.2007)

βlsoe −0.0104
(0.0238)

−0.0108
(0.0236)

−0.0075
(0.0229)

−0.0004
(0.0205)

− 0.0006
(0.0067)

αlppe −0.0003
(0.0027)

0.0002
(0.0027)

0.0004
(0.0027)

0.0009
(0.0027)

− −0.0003
(0.0034)

αlepe −0.0101
(0.0240)

−0.0111
(0.0238)

−0.0079
(0.0230)

−0.0012
(0.0206)

− 0.0009
(0.0036)

βlsie 0.0552
(0.0250)

0.0521
(0.0274)

0.0474
(0.0296)

0.0548
(0.0266)

0.0628
(0.0264)

0.0656
(0.0266)

h CV/RT 5/6 of CV/RT 2/3 of CV/RT 1/2 of CV/RT − −

Notes: The estimates reported in Panel A of the Table were calculated use the kernel procedure

outlined in the main text. Estimated standard errors are in parentheses. A multivariate standard

normal kernel was used with a bandwidth matrix proportional to the covariance matrix of the regres-

sors (fraction female in the classroom, total school enrollment, fraction female in the entire school

and class size). In the first column of Panel A the degrees of proportionality used for estimating

gH(s, w, x)and gL(s, w, x) were chosen by leave-own-school-out cross validation. The bandwidths

for ∇sgH(s, w, x)and ∇sgL(s, w, x) were then taken to be rescaled versions of the correspond-

ing cross-validated ones. The chosen rescaling reflects the differential MSE-optimal bandwidth for

pointwise conditional mean and derivative estimation. The estimated standard errors are calculated

using nonparametric estimates of the relevant influence functions. The bandwidth used for the joint

density of fS,W,X(s, w, x), which appears in the influence functions, is a multivariate version of

Silverman’s ‘rule-of-thumb’ bandwidth (see Wand and Jones, 1995, p. 111). The bandwidth used

for ∇sfS,W,X(s, w, x) is a rescaling of this rule-of-thumb bandwidth. Columns 2 through 4 report

undersmoothed estimates based on bandwidth values equal to, respectively, 5/6, 2/3 and 1/2 of

the column one bandwidth values. Panel B of the table reports estimates based on parametric

models for gH(s, w, x) and gL(s, w, x). Standard errors were calculated taking into account the

sequential nature of the estimation procedure. In both the nonparametric and parametric cases

standard errors appropriately account for arbitrary within-school dependence in outcomes across

individuals. See the notes to Figure 2 for additional details on the estimation sample.
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related context, might also be fruitful.

Finally, we have not formally developed an estimator for βesq, our measure of the efficiency

of the status quo assignment. While showing consistency of the simple plug in estimator

(informally) used in the application should be straightforward, the characterization of its

asymptotic sampling properties appears more difficult (see Graham, 2011).

9 Postscript

The onset of the research reported in this paper began in the summer of 2005, with drafts

circulated as early as 2007. In this section we touch on several developments in econometrics,

statistics and machine learning in the intervening period that connect with the work reported

on above.

‘As if’ double randomization, whereby individuals – conditional on their type – are ran-

domly assigned to groups and groups, so formed, are randomly assigned to locations, drives

our main identification results. Also necessary for identification are some support conditions

on the status quo assignment. For our local reallocation estimands, the necessary support

conditions are modest (see Assumption 2.5 above). The required support conditions for the

efficiency of the status quo measure are substantially stronger (see Proposition 6.1).

Some real world indication of the practical importance of these conditions is provided

by the work of Carrell et al. (2013). Carrell et al. (2013) measure the effect of peer group

composition on academic achievement among Air Force Academy cadets. Informed by a

fitted flexible parametric model, they changed the peer group assignment mechanism at the

Air Force Academy in an attempt to maximize average academic achievement. In practice

academic achievement declined under their policy. Their work provides a cautionary tale on

the dangers of extrapolation. It also suggests that identification of our efficiency of the status

quo measure may be difficult in practice. In contrast, we expect that our local reallocation

estimands will be informative about the effects of modest perturbations of the status quo

under conditions where ‘as if’ double randomization holds. The challenges associated with

extrapolation in other areas of causal inference are well understood (see, for example, Imbens

and Rubin (2015)). We expect such challenges to be especially acute when considering

reallocation effects.

Empirical research on sorting and peer effects, which connects to and/or builds upon

ideas in this paper, includes work by Angrist and Lang (2004), Friesen and Krauth (2007,

2010), Booij et al. (2017), Li et al. (2019) and, especially, Graham et al. (2023). Angrist

(2014) and Graham (2018) provide contrasting assessments of, and suggested ways forward

for, empirical research on peer effects.
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Our work also intersects with ideas in the causal inference literature on interference and

spillovers. Our exchangeability restriction on the potential response function shares features

with ideas introduced by Manski (2013) in the treatment effects context. See also Ferracci

et al. (2014), Kasy (2016), Baird et al. (2018) and Viviano and Rudder (2024) for related

applications and/or methodological developments. Of particular interest are analyses which

allow for partial identification. Our no sorting and no matching conditions may be difficult to

defend outside of overtly experimental settings; formulating relaxations of these conditions

and studying their implications for identification would be of considerable value.

A related avenue of exploration would involve imposing additional restrictions on the

production technology and exploring whether such restrictions allow for the relaxation of

conditions on the status quo assignment. The referee, for example, has suggested that

the imposition of a partially linear structure on, for example, gL (s, w, x) and gH (s, w, x)

might allow for a weakening of our no matching/sorting on observables conditions. Such

explorations could be very important for bringing the ideas of this paper to observational

data.

Our focus on kernel-based estimation methods reflects the widespread reliance on such

methods by econometricians in the early 2000s. It also reflects the influence of Jim Powell’s

seminal work on weighted average derivative estimation on the analysis of our own local

reallocation effects (Powell et al., 1989).

Since the initial drafting of our paper, developments in computer science, statistics and

econometrics have substantially expanded the range of estimation procedures which can be

applied to semiparametric two-step estimators like our own. Compare Newey (1994a) with,

for example, Chernozhukov et al. (2022). We expect these innovations in semiparametric

estimation to be of relevance to empirical researchers wishing to study rellocation effects.

Formal work on methods of estimation for the estimands introduced above might also be of

interest.

In Graham et al. (2018) we explore covariate adjustment and semiparametric efficiency

bounds in the related context introduced in Graham et al. (2014). Covariate adjustment

in the setting introduced in this paper appears to be comparatively more complicated; the

basic results reported in Section 5 above provide a basic starting point for further research.

Covariates raise important conceptual issues even at the level of estimand definition. Con-

sider a status quo assignment where both peers and other outcome-enhancing resources (e.g.,

teaching quality) are unequally distributed. In this setting a reallocation may change the

distribution of achievement both because of changes in peer group composition and because,

for example, average teaching quality changes for low types. These complications are scien-

tifically interesting as well as policy-relevant. Some additional discussion of this, and related
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issues, can be found in the survey paper by Graham (2018) as well as in Graham et al.

(2023).22

Understanding the effects of segregation remains as important today as it was when James

Samuel Coleman undertook his pioneering research over 50 years ago. Segregation, by race

and income, remains widespread in American neighborhoods and schools. Our understanding

of the consequences of such segregation remains incomplete.

22We thank the anonymous referee for some shrewd discussion on this issue.
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Appendices

A Some preliminary results

Lemma A.1. For X, a continuous random variable, with (i) compact support X = [a, b] , (ii)
cumulative distribution function FX (X), and (iii) g (·) a continuously differentiable function
on the support of X:

1. The slope coefficient of the (mean squared error minimizing) linear predictor (LP) of
g (X) given X has a weighted average derivative representation of

B =
C (g (X) , X)

V (X)
= E

[
ω (X)

∂g (X)

∂x

]
,

where

ω (x) =
1

fX (x)

E [X − µX |X ≥ x] (1− FX (x))∫ v=b

v=a
E [X − µX |X ≥ v] (1− FX (v)) dv

, E [ω (X)] = 1,

and

2. B gives maximum weight to values of ∂g(X)
∂x

for X close to its mean, µX = E [X], and
minimum weight when X is near the boundaries of its support.

The proof for the first result of the Lemma is similar to that of Lemma 5 of Angrist et al.
(2000). The second result of the Lemma, i.e., the precise characterization of the weighting
process follows from a simple integration by parts argument. Observe that g (X) − g (a) =∫ u=X

u=a
∂g(u)
∂x

du and that E [g (a) (X − µX)] = 0. Under weak conditions we therefore have

C (g (X) , X) = E [g (X) (X − µX)]

= E
[∫ u=X

u=a

∂g (u)

∂x
(X − µX) du

]
= E

[∫ u=b

u=a

∂g (u)

∂x
(X ≥ u) (X − µX) du

]
=

∫ u=b

u=a

∂g (u)

∂x
E [(X ≥ u) (X − µX)] du

=

∫ u=b

u=a

∂g (u)

∂x
E [X − µX |X ≥ u] (1− FX (u)) du.
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The variance of X can be written as

V (X) = E
[
X (X − µX)

′]
= E

[∫ v=X

v=a

1 (X − µX) dv

]
=

∫ v=b

v=a

E [X − µX |X ≥ v] (1− F (v)) dv.

The first result follows for ω (x) as given in the Lemma. To show the second result, that the

weighted average derivative representation of B gives the most emphasis to values of ∂g(X)
∂x

for X close to its mean, begin by noting that

E
[
ω (X)

∂g (X)

∂x

]
=

∫ u=b

u=a
∂g(u)
∂x

E [X − µX |X ≥ u] (1− FX (u)) du∫ v=b

v=a
E [X − µX |X ≥ v] (1− FX (v)) dv

.

Therefore the size of the weight on ∂g(x)
∂x

is proportional to

E [X − µX |X ≥ x] (1− FX (x)) .

Integration by parts (with u = 1− FX (t) and v = t) gives∫ b

x

[1− FX (t)] dt = [1− FX (t)] t|bx +
∫ b

x

tfX (t) dt (23)

= − [1− FX (x)]x+

∫ b

u

tfX (t) dt.

We then write

∂

∂x
{E [X − µX |X ≥ x] (1− FX (x))} =

∂

∂x

∫ b

x

x fX (t) dt− ∂

∂x
[1− FX (x)]µX

=
∂

∂x

∫ b

x

x fX (t) dt+ µXfX (x)

Using (23) to substitute for ∂
∂x

∫ b

x
x fX (t) dt gives

∂

∂x
{E [X − µX |X ≥ x] (1− FX (x))} =

∂

∂x

{
[1− FX (x)]x+

∫ b

x

[1− FX (t)] dt

}
+ µXfX (x)

= [1− FX (x)] +
∂

∂x

∫ b

x

[1− FX (t)] dt

− (x− µX) fX (x)

= [1− FX (x)]− [1− FX (x)]− (x− µX) fX (x)

= − (x− µX) fX (x) .
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This gives ∂
∂x

{E [X − µX |X ≥ x] (1− FX (x))} = 0 at x = µX . This derivative is negative
for x > µX and positive for x < µX , hence it attains a maximum at x = µX and its minimum
at the boundaries of the support of X.

B Identification proofs

Proof of Proposition 2.1: First we show that Assumptions 2.3 and 2.4 imply the density
factorization

fA,U |T (ac, uc|tc) =

{
N∏
j=1

fA(acj)

}
fU(uc), (24)

as claimed in the main text. We begin by considering the implications of the second part of
Assumption 2.4. Start with the case where N = 2 (i.e., groups consist of two individuals).
In this case the second part of Assumption 2.4 becomes

Ac2, Tc2 ⊥ Ac1|Tc1, Ac1, Tc1 ⊥ Ac2|Tc2.

The first of these conditions generates the density factorization

fA,T (ac1, ac2, tc1, tc2) = f (ac1| tc1) f (ac2, tc1, tc2) ,

while the second the factorization

fA,T (ac1, ac2, tc1, tc2) = f (ac2| tc2) f (ac1, tc1, tc2) .

These two factorizations give the conditional density factorizations

fA|T (ac1, ac2| tc1, tc2) = f (ac1| tc1) f (ac2| tc1, tc2) = f (ac2| tc2) f (ac1| tc1, tc2) .

Integrating over ac1we get
f (ac2| tc1, tc2) = f (ac2| tc2) ,

which after substitution yields

fA|T (ac1, ac2| tc1, tc2) = f (ac1| tc1) f (ac2| tc2) .

Now consider the N = 3 case. The second part of Assumption 2.4 now implies

f (ac1, ac2, ac3, tc1, tc2, tc3) = f (ac1| tc1) f (ac2, ac3, tc1, tc2, tc3)
f (ac1, ac2, ac3, tc1, tc2, tc3) = f (ac2| tc2) f (ac1, ac3, tc1, tc2, tc3) ,

so that after dividing through by f (tc1, tc2, tc3) and integrating over ac3 we get the equalities

f (ac1, ac2| tc1, tc2, tc3) = f (ac1| tc1) f (ac2| tc1, tc2, tc3)
f (ac1, ac2| tc1, tc2, tc3) = f (ac2| tc2) f (ac1| tc1, tc2, tc3) .
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Integrating over ac1then yields the equality

f (ac2| tc1, tc2, tc3) = f (ac2| tc2) .

The same argument also gives the equalities

f (ac1| tc1, tc2, tc3) = f (ac1| tc1)
f (ac3| tc1, tc2, tc3) = f (ac3| tc3) .

Now observe that, using the results above,

fA|T (ac1, ac2, ac3| tc1, tc2, tc3) = f (ac1| tc1) f (ac2, ac3| tc1, tc2, tc3)
= f (ac1| tc1) f (ac2| tc2) f (ac3| tc1, tc2, tc3)
= f (ac1| tc1) f (ac2| tc2) f (ac3| tc3) .

Finally Assumption 2.3 gives

fA|T (ac1, ac2, ac3| tc1, tc2, tc3) = f (ac1) f (ac2) f (ac3) .

The above argument can be generalized to groups of arbitrary size such that under Assump-
tion 2.4 we have

fA|T (ac|tc) =
N∏
j=1

fA(acj).

Now using the first part of Assumption 2.4 we get

fA,U |T (ac, uc| tc) = fA|T (ac|tc)fU (uc) ,

which along with the factorization of fA|T (ac|tc) derived above gives the needed result.
Now using (24) we can write

fA,U |T (ac, uc| tc) = f
(
a, ap(·), u

∣∣ t, tp(·)) (25)

= f
(
a, ap(·), u

∣∣ t, tp(·), s)
= fA (a)

∏
j∈p(·)

fA
(
ap(·),j

)
fU (u)

= f
(
a, ap(·), u

∣∣ t, s) ,
where the second equality follows from that fact that s− is a deterministic function of tp(·),
the third equality from (24), and the fourth by inspection of the second and third density
representations.

Recall that Assumptions 2.1 and 2.2 give Yi = Yi(S−i, τKH
(AH

p(i)), τKL
(AL

p(i)), Ui). Writing

Yi(S−i, τKH
(AH

p(i)), τKL
(AL

p(i)), Ui) = g(Ti, Ai, S−i, τKH
(AH

p(i)), τKL
(AL

p(i)), Ui)

56



we therefore have, using (25),

E [Yi|Ti = 1, Si = s] = E
[
g(Ti, Ai, S−i, τKH

(AH
p(i)), τKL

(AL
p(i)), Ui)

∣∣Ti = 1, Si = s
]

=

∫
. . .

∫
g(1, a, s−, τKH

(aHp(·)), τKL
(aLp(·)), u)f

(
a, ap(·), u

∣∣ t, s) du
 ∏

j∈p(·)

dap(·),j

 da

=

∫ {∫
. . .

∫
g(1, a, s−, τKH

(aHp(·)), τKL
(aLp(·)), u)

×

 ∏
j∈p(·)

fA
(
ap(·),j

)
dap(·),j

 fU (u) du

 fA (a) da.

Let

ge (t, a, s−i) =

∫
. . .

∫
g(t, a, s−, τKH

(aHp(·)), τKL
(aLp(·)), u)

 ∏
j∈p(·)

fA
(
ap(·),j

)
dap(·),j

 fU (u) du.

Observe that ge (Ti, Ai, s−i) = Y e
i (s−i) , therefore by Assumption 2.3 we have∫

ge (1, a, s−i) fA (a) da =

∫
ge (1, a, s−i) fA|T (a|T = 1) da

= E [Y e
i (s−i)|T = 1] = mH (s) ,

as claimed. The result for mL (s) follows analogously. Identification of the two gradient
function then follows directly from Assumption 2.5.

Feasibility of local reallocation density: Feasibility of (8) follows from the fact that,
making the change of variables v = (s+ λpH,κ) / (1 + λ), and decomposing the integral,∫ 1

0

sf r
Sc
(s;λ, κ)ds =

∫ 1

0

s

1 + λdκ (s)
f sq
Sc

(
s+ λdκ (s) pH,κ

1 + λdκ (s)

)
ds

=

∫ s+κ

0

sf sq
Sc
(s) ds+

∫ s−κ

s+κ

s

1 + λ
f sq
Sc

(
s+ λpH,κ

1 + λ

)
ds+

∫ 1

s−κ

sf sq
Sc
(s) ds

= Pr (Si ≤ s+ κ)E [Ti|Si ≤ s+ κ]

+

∫ s−κ

s+κ

{(1 + λ) v − λpH,κ} f sq
Sc
(v)dv

+ Pr (Si ≥ s− κ)E [Ti|Si ≥ s− κ]

= E [dκ (Si) {(1 + λ)Si − λpH,κ}]
+ Pr (Si ≥ s− κ)E [Ti|Si ≥ s− κ]

= pH ,

as required.
Proof of Theorem 3.1: The result follows directly from Lemma A.1 above.
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Proof of Theorem 6.1: Consider the problem

max
FS(·)∈ΓS

∫
M (s) fS (s) ds, s.t.

∫
sfS (s) ds = pH , (26)

where M (s) is the concave envelope of m (s) on S. By concavity of M (s) and Jensen’s
inequality we have ∫

M (s) fS (s) ds ≤M (EF [S]) .

Feasibility requires that EF [S] = pH , therefore

max
FS(·)∈ΓS

∫
M (s) fS (s) ds ≤M(pH). (27)

Observe that this upper bound is attained by the degenerate distribution concentrated at
pH (i.e., M∗ =M (pH)).

Since M (s) ≥ m (s) for all s ∈ S we have the inequalities

M(pH) ≥
∫
M (s) fS (s) ds ≥

∫
m (s) fS (s) ds,

for all feasible FS (·) . Therefore any feasible F ∗
S (s) such that M (pH) =

∫
m (s) f ∗

S (s) ds
must be a solution to the planner’s problem.

By the definition of M (s) , sL and sU we have that M (s) is linear on the interval s ∈
[sL, sU ], i.e.,

M (s) = a+ bs, s ∈ [sL, sU ]

with

a = m (sL)−
(
m (sU)−m (sL)

sU − sL

)
sL, b =

m (sU)−m (sL)

sU − sL
.

This gives

M (pH) = m (sL)−
(
m (sU)−m (sL)

sU − sL

)
sL +

(
m (sU)−m (sL)

sU − sL

)
pH

= m (sL)

(
1− pH − sL

sU − sL

)
+m (sU)

pH − sL
sU − sL

= (1− π)m (sL) + πm (sL)

=

∫
m (s) f ∗

S (s) ds.

Since
∫
sf ∗

S (s) ds = pH , and therefore F ∗
S (s) feasible, we have that F ∗

S (s) is a solution to
the planner’s problem as claimed.

Proof of Corollary 6.1: Conditional on setting the fraction of high types assigned to
groups of size nj equal to σj we know, by Theorem 6.1, that F ∗

S|N (s|nj) is an outcome-

maximizing allocation. Since, again conditional on σj,
∫
m (s, nj) f

∗
S|N (s|nj) ds = M (σj),

we may therefore choose σ1, . . . , σJ by solving (22) which is concave by inspection.
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Measuring the effects of segregation
in the presence of social spillovers: a nonparametric

approach,
supplemental material: proofs of Propositions 4.1 to 4.5

This appendix details the derivation of the influence functions associated with the esti-
mators described in Section 4 of the main paper. Equation number continues in sequence
with that of the main paper. All notation is as established in the main paper unless stated
otherwise. In this appendix all expectations are with respect to the population of individuals
unless noted otherwise. The i subscripts on random variables are omitted to simplify the
notation.

We begin by noting that βase, βlsoe and βlsie are unrestricted parameters in the sense
that their definitions do not place substantive restrictions on the joint distribution of
Z = (Y, T, S)′ .23 Newey (1990, pp. 106 - 107) notes that the pathwise derivative of such
unrestricted parameters will be unique. This implies that any regular estimator will have
an influence function equal to the unique pathwise derivative. Furthermore, as described in
Newey (1994a), the semiparametric efficiency bound for such parameters can be calculated
as the variance of the pathwise derivative of the parameter with respect to the distribution
of the data. The large sample characterization of the two-step M-estimators described in
the main text follows from these observations. While we do not provide regularity condi-
tions ensuring

√
C consistency and asymptotic normality of our proposed estimators, our

calculations do provide a formula for their large sample variance. Note that we do provide
conditions that guarantee finiteness of the semiparametric efficiency bound, hence

√
C con-

sistency is achievable under suitable regularity conditions. Our approach is similar in spirit
and implementation to that of Newey and Stoker (1994) in their analysis of weighted average
derivatives.

To describe our calculations further we let f (z) denote the true density of Z = z. A
parametric submodel or path is a parametric family of densities f (z; η) containing the ‘truth’
(i.e., f (z; η0) = f (z) for some η0). Let β (η) denote the population value of the parameter in
question when Z is distributed according to f (z; η). The pathwise derivative is the function
ϕ (Z) such that

∇ηβ (η)|η=η0
= E

[
ϕ (Z)Sη (Z)

′] (28)

where Sη (z) = ∇ηf (z; η0) /f (z; η0) denotes the score of f (z; η) at η = η0 .24 By the delta
method the Cramer-Rao variance bound for β (η) in the parametric submodel is

∇ηβ (η)E
[
Sη (Z)Sη (Z)

′]−1∇ηβ (η)
′ = E

[
ϕ (Z)Sη (Z)

′]E [
Sη (Z)Sη (Z)

′]−1 E
[
Sη (Z)ϕ (Z)

′] .
23In such models the allowable set of scores can approximate any mean zero function of Z (with finite

variance).
24The form of (28) and a simple argument due to Newey (1990; ?) shows why ϕ (Z) is unique when β is

an unrestricted parameter. Let ϕ (Z) and ϕ̃ (Z) denote two pathwise derivatives (centered to be mean zero),
by (28) we have

E
[{

ϕ (Z)− ϕ̃ (Z)
}
Sη (Z)

′
]
= 0.

When β is an unrestricted parameter the set of valid scores, or the tangent set, for the model is given by
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Since Sη (z) is unrestricted the supremum of all such Cramer-Rao bounds, or the semipara-
metric variance bound, is obviously

E
[
ϕ (Z)ϕ (Z)′

]
.

By the arguments of Newey (1994) the asymptotic variance of any regular estimator of β is
given by this bound.

The specific structure of each of our estimators can be used to simplify the calculation
of ϕ (Z). In particular each of our estimators can be formulated as a two-step M-estimator
with a nonparametric first step (see Newey and McFadden, 1994)). As shown by Newey
(1994a) such problems have certain features which can be exploited in order to calculate the
pathwise derivative. Let h be a function of Z, the arguments of which are suppressed in
order to simplify notation; each our estimators can be defined as the solution to

1

I

∑I

i=1
ψ(Zi, β̂, h̃) = 0,

where ψ (Z, β, h) is some known function and h̃ is a preliminary ‘first step’ nonparametric
estimate of h.

Let ψ (Z, h) = ψ (Z, β0, h). Application of the chain rule yields

∇ηEη0 [ψ (Z, h (η))] =

∫
∇ηψ (z, h (η)) f (z) dz +

∫
ψ (z, h0)Sη (z)

′ f (z) dz

= ∇ηEη0 [ψ (Z, h (η))] + Eη0

[
ψ (Z, h0)Sη (Z)

′] ,
where Eη [·] denotes expectations taken with respect to the density f (z; η) (throughout
E [·] = Eη0 [·]). Noting that Eη0 [ψ (Z, β (η) , h (η))]|η=η0

= 0 a direct application of the
implicit function theorem and the previous result then gives

∇ηβ (η)|η=η0
= − [∇βEη0 [ψ (Z, β0, h (η0))]]

−1 ×∇ηEη0 [ψ (Z, β0, h (η0))]

= −Γ−1
{
E
[
ψ (Z, h0)Sη (z)

′]+∇ηE [ψ (Z, h (η0))]
}

with Γ = ∇βE [ψ (Z, β, h0)]|β=β0
(assumed nonsingular). If we can find at function δ (z) such

that
∇ηE [ψ (Z, h (η))] = Eη

[
δ (Z)Sη (Z)

′] , (29)

then the influence function for any regular estimator of β, by the results of Newey (1990,
1994a) and equation (28) above, will be

ϕ (Z) = −Γ−1 {ψ (Z, h0) + δ (Z)} .

T = {Sη (Z) : E [Sη (Z)] = 0} . Since ϕ (Z)− ϕ̃ (Z) belongs to this set orthogonality requires that

E
[{

ϕ (Z)− ϕ̃ (Z)
}′ {

ϕ (Z)− ϕ̃ (Z)
}]

= 0

or, equivalently, the equality ϕ (Z) = ϕ̃ (Z) . A simple intuition for this result, also due to Newey (1990), is
that when the model places no restrictions on the distribution of the data β is just identified.
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As explained by Newey (1994a) and also Newey and McFadden (1994), the function δ (Z)
may be viewed a correction term which accounts for first step estimation of h. Below
we use the structure of (29) to calculate the appropriate correction term for each of our
estimators. In particular we begin by linearizing ψ (z, h (η)) around the truth h0. With
ψ (z, h)− ψ (z, h0) ≃ Ψ(z, h− h0) , Ψ(z, h) linear in h, and (29) we then have

∇ηE [ψ (Z, h (η)− h0)] = ∇ηE [Ψ (Z, h (η))] = Eη

[
δ (Z)Sη (Z)

′] . (30)

Finding the form of δ (z) thus involves finding an ‘integral representation’ for E [Ψ (Z, h (η))].
The bulk of our derivations detailed below are devoted to this step.

Once the form of δ (Z) has been calculated, the asymptotic variance formulae given
in Section 4 follow directly. A minor complication involves appropriately accounting for
within-group dependence in the data induced by the presence of unobserved location-specific
attributes. As noted by Newey (1994a, p. 1367), such dependence does not affect the form of

δ (Z) and so can be accounted for relatively easily. Note that β̂ can be equivalently expressed
as the solution to

1

C

C∑
c=1

∑
i∈{i:Gi=c}

ψ(Zi, β̂, h̃) = 0,

with independence across groups so that the second step moment function is the within-group
summation g (Zi, β, h) =

∑
i∈{i:Gi=c} ψ(Zi, β, h). Let

G = ∇βE
[∑

i∈{i:Gi=c}
ψ(Zi, β, h0)

]∣∣∣∣
β=β0

,

and

ϕ̃c = −G−1

{∑
i∈{i:Gi=c}

ψ (Zi, h0) + δ (Zi)

}
,

so that the appropriate asymptotic sampling distribution is

√
C(β̂ − β0)

D→ N
(
0,E

[
ϕ̃cϕ̃

′
c

])
.

In all of the estimators considered here G = −E [Ni] = −µN , so that ϕ̃c =

µ−1
N

{∑
i∈{i:Gi=c} ψ (Zi, h0) + δ (Zi)

}
.

B.1 Influence function derivation for β̂lsoe

We begin with the local segregation outcome effect (LSOE) defined in Section 3:

βlsoe
0 = E [dκ (S)∇sm (S) (S − pH,κ)] = E

[
dκ (S)∇s

{
h10 (R) + h20 (R)

h30 (R)

}(
S − h40 (R)

h50 (R)

)]
,
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where R = (T, S)′ (such that Z = (Y,R′)′) and

h10 (r) = fS (s)E [TY |S = s] = fS (s) smH (s) (31)

h20 (r) = fS (s)E [ (1− T )Y |S = s] = fS (s) (1− s)mL (s)

h30 (r) = fS (s)

h40 (r) = E [dκ (S)T ]

h50 (r) = E [dκ (S)] .

Let h (r) = (h1 (r) , h2 (r) , h3 (r) , h4 (r) , h5 (r))
′ . For what follows it is helpful to note that

fT |S (t| s) = st (1− s)1−t .
The second step moment restriction defining βlsoe

0 is

E
[
ψ
(
R, βlsoe

0 , h0
)]

= 0,

with

ψ
(
r, βlsoe, h

)
= dκ (s)∇s

{
h1 (r) + h2 (r)

h3 (r)

}
×
(
s− h40 (R)

h50 (R)

)
− βlsoe.

Let ψ
(
r, βlsoe

0 , h
)
= ψ (r, h) , linearizing ψ (r, h) about h0 gives

ψ (r, h)− ψ (r, h0) ≃ Ψ(r, h− h0) ,

where Ψ (r, h− h0) is linear in h − h0. The precise form of Ψ (r, h− h0) is ob-
tained by expanding the two ratios entering ψ (R, h) pointwise. Since a/b − a0/b0 =
b−1
0 [1− b−1 (b− b0)] [(a− a0)− (a0/b0) (b− b0)] , the linearization of a/b around a0/b0 is
given by b−1

0 [(a− a0)− (a0/b0) (b− b0)] . This fact and the product rule allow us to write

Ψ (r, h− h0) = dκ (s)∇s

 1

h30 (r)

[
1, 1,−h10 (r) + h20 (r)

h30 (r)

] h1 (r)− h10 (r)
h2 (r)− h20 (r)
h3 (r)− h30 (r)


×

(
s− h40 (r)

h50 (r)

)
− dκ (s)∇s

{
h10 (r) + h20 (r)

h30 (r)

}
× 1

h50 (r)

{
1,−h40 (r)

h50 (r)

}(
h4 (r)− h40 (r)
h5 (r)− h50 (r)

)
.

Differentiating the first term in {·} with respect to s, collecting terms, and rearranging
yields

Ψ (r, h (r)) = a0 (r)
′ h (r) +∇sh (r)

′ b0 (r) + c0 (r)
′ h (r) , (32)
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where

a0 (r) = dκ (s)
s− pH,κ

fS (s)
(−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r) , 0, 0)′

b0 (r) = dκ (s)
s− pH,κ

fS (s)
(1, 1,−m (s) , 0, 0)′

c0 (r) = − dκ (s)

E [dκ (S)]
∇sm (s) (0, 0, 0, 1,−E [T | dκ (S) = 1])′

with

k (r) =
∇sfS (s)

fS (s)
, m (s) =

h10 (r) + h20 (r)

h30 (r)
.

As noted above the influence function for β̂lsoe will take the form ψ (R, γ0, h0) + δ (Z),
where δ (Z) is the term which ‘corrects’ for first stage nonparametric estimation. From (32)
and (30) this term solves

∇ηE
[
a0 (R)

′ h (R; η)
]
+∇ηE

[
∇sh (R; η)

′ b0 (R)
]
+∇ηE

[
c0 (R)

′ h (R; η)
]
= Eη

[
δ (Z)Sη (Z)

′] .
To apply this result we begin by evaluating the expectations of on the left-hand-side of

the above equation term-by-term. By iterated expectations we have, for the first term in
(32),

E
[
a0 (R)

′ h (R; η)
]
=

∫
dκ (s)

s− pH,κ

fS (s)
(−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r))

×

 fS (s; η) sEη [Y |T = 1, S = s]
fS (s; η) (1− s)Eη [Y |T = 0, S = s]

fS (s; η)

 f0 (r) dr

=

∫
dκ (s) (s− pH,κ) (−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r))

×

 Eη [TY |S = s]
Eη [ (1− T )Y |S = s]

1

 fS (s; η) ds

= Eη

[
v1 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where the second equality follows from the fact that fT |S (t| s; η) = st (1− s)1−t does not
depend on η and

v1 (r) = (s− pH,κ) {−∇sm (s) +m (s) k (r) , 0,−k (r) ,−k (r)}′ .

To evaluate the second term of (32) we use integration by parts as in Powell et al. (1989)
(with u(r) = f0 (r) b0 (r)

′ and v (r) = h (r; η)) to obtain a representation directly in terms
of h (r; η). Using the fact that b0 (r) and h (r; η) vary in s alone, as well as the density
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factorization f0 (r) = st (1− s)1−t f0 (s) , we have

E
[
∇sh (R; η)

′ b0 (R)
]
=

∫
f0 (r) b0 (r)

′ [∇sh (r; η)] dr

=

∫ s=1

s=0

∑
t=0,1

st (1− s)1−t f0 (s) b0 (r)
′ [∇sh (r; η)] ds

=

∫ s=1

s=0

f0 (s) b0 (r)
′ [∇sh (r; η)] ds

=
[
f0 (s) b0 (r)

′ h (r; η)
]1
0
−

∫ s=1

s=0

∇s

[
f0 (s) b0 (r)

′]h (r; η) ds
= 0−

∫ s=1

s=0

∇s

[
f0 (s) b0 (r)

′]h (r; η) dr
= Eη

[
v2 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with
v2 (r) = (s− pH,κ) {∇sm (s) , 0, 0, 0}′ + {m (s) , 0,−1,−1}′ .

This follows from the fact that f0 (s) b0 (r) = 0 at s = 0, 1 since dκ (0) = dκ (1) = 0 and
also that

∇s

[
f0 (s) b0 (r)

′] = ∇s

[
dκ (s) (s− pH,κ) {1, 1,−m (s) , 0, 0}′

]
= dκ (s) (s− pH,κ) {0, 0,−∇sm (s) , 0, 0}′

+ dκ (s) {1, 1,−m (s) , 0, 0}′ .

Finally we take the expectation of the final term in (32):

E
[
c0 (R)

′ h (R; η)
]
= −

∫
dκ (s)

E [dκ (S)]
∇sm (s) (0, 0, 0, 1,−E [T | dκ (S) = 1])′ h (r; η) f0 (r) dr

= −
∫

dκ (s)

E [dκ (S)]
∇sm (s) (Eη [dκ (S)T ]− Eη [dκ (S)]E [T | dκ (S) = 1]) f0 (r) dr

= −
{∫

dκ (s)

E [dκ (S)]
∇sm (s) f0 (r) dr

}
Eη [dκ (S) (T − pH,κ)]

= −E [∇sm (s)| dκ (S) = 1]Eη [dκ (S) (T − pH,κ)]

= Eη

[
v3 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where
v3 (R) = E [∇sm (s)| dκ (S) = 1] {pH,κ,−1, 0, 0}′ .

Combining terms gives

E [Ψ (R, h0)] = Eη

[
v (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with v (r) = v1 (r) + v2 (r) + v3 (r) or, equivalently,
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v (r) = {m (s) + (s− pH,κ)m (s) k (r) + E [∇sm (s)| dκ (S) = 1] pH,κ,

−E [∇sm (s)| dκ (S) = 1] ,− (s− pH,κ) k (r)− 1,− (s− pH,κ) k (r)− 1} .

Differentiating with respect to η gives

∇ηEη

[
v (R) dκ (S) {1, T, TY, (1− T )Y }′

]
= Eη

[
v (R) dκ (S) {1, T, TY, (1− T )Y }′ S′

η

]
and hence a correction term of δ (Z) = v (R) dκ (S) {1, T, TY, (1− T )Y }′ or

δlsoe (z) = −dκ (s)
∇sfS (s)

fS (s)
(y −m (s)) (s− pH,κ) (33)

− dκ (s) (y −m (s))− E [∇sm (s)| dκ (S) = 1] dκ (s) (t− pH,κ) ,

as claimed.

B.2 Influence function derivation for α̂lppe

The local private peer effect (LPPE) of Section 3 is given by

αlppe
0 = E

[
dκ (S)

(
h10 (R)

sh30 (R)
− h20 (R)

(1− s)h30 (R)

)(
S − h40 (R)

h50 (R)

)]
,

with h (r) = (h1 (r) , h2 (r) , h3 (r) , h4 (r) , h5 (r))
′ as defined in (31) above. Linearizing the

implied moment function gives

Ψ (r, h (r)) = a0 (r)
′ h (r) + b0 (r)

′ h (r) , (34)

where

a0 (r) =
dκ (s)

fS (s)

{
s− pH,κ

s
,−s− pH,κ

1− s
,− [mH (s)−mL (s)] (s− pH,κ) , 0, 0

}
,

b0 (r) = −dκ (s)
mH (s)−mL (s)

E [dκ (S)]
{0, 0, 0, 1,−pH,κ} .
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Taking expectations of a0 (R)
′ h (R; η) yields

E
[
a0 (R)

′ h (R; η)
]
=

∫
dκ (s)

fS (s)

{
s− pH,κ

s
,−s− pH,κ

1− s
,− [mH (s)−mL (s)] (s− pH,κ)

}

×

 fS (s; η)Eη [TY |S = s]
fS (s; η)Eη [ (1− T )Y |S = s]

fS (s; η)

 fS (s) ds

=

∫
dκ (s)

{
s− pH,κ

s
,−s− pH,κ

1− s
,− [mH (s)−mL (s)] (s− pH,κ)

}

×

 Eη [TY |S = s]
Eη [ (1− T )Y |S = s]

1

 fS (s; η) ds

= Eη

[
υ1 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where

υ1 (r) =

{
− [mH (s)−mL (s)] (s− pH,κ) , 0,

s− pH,κ

s
,−s− pH,κ

1− s

}
.

Now taking expectations of b0 (R)
′ h (R; η) we get

E
[
b0 (R)

′ h (R; η)
]
= −

∫
dκ (s)

mH (s)−mL (s)

E [dκ (S)]
{1,−pH,κ}

(
Eη [dκ (S)T ]
Eη [dκ (S)]

)
fS (s) ds

= −
[∫

dκ (s)
mH (s)−mL (s)

E [dκ (S)]
fS (s) ds

]
× Eη [dκ (S) (T − pH,κ)]

= −E
[

dκ (S)

E [dκ (S)]
(mH (S)−mL (S))

]
× Eη [dκ (S) (T − pH,κ)]

= −E [mH (S)−mL (S)| dκ (S) = 1]× Eη [dκ (S) (T − pH,κ)]

= −Eη

[
υ2 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with
υ2 (r) = E [mH (S)−mL (S)| dκ (S) = 1] {−pH,κ, 1} .

Using (34) and (30), these calculations suggest a correction term of the form

δlppe (z) = dκ (s)

{(
t

s

)
y −mH (s)

}
(s− pH,κ)− dκ (s)

{(
1− t

1− s

)
y −mL (s)

}
(s− pH,κ)

(35)

− E [mH (S)−mL (S)| dκ (S) = 1] dκ (s) (t− pH,κ) ,

as claimed.
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B.3 Influence function derivation for α̂lepe

The local external peer effect (LEPE) of Section 3 is given by

αlepe
0 = E

[
dκ (S)

(
S∇s

{
h10 (R)

Sh30 (R)

}
+ (1− S)∇s

{
h20 (R)

(1− s)h30 (R)

})(
S − h40 (R)

h50 (R)

)]
with h (r) = (h1 (r) , h2 (r) , h3 (r) , h4 (r) , h5 (r))

′ as defined in (31) above. Linearizing the
implied moment function gives

Ψ (r, h (r)) = dκ (s) s∇s

{
1

fS (s)

{
1

s
,−mH (s)

}(
h1 (r)− h10 (r)
h3 (r)− h30 (r)

)}
(s− pH,κ)

+ dκ (s) (1− s)∇s

{
1

fS (s)

{
1

1− s
,−mL (s)

}(
h2 (r)− h20 (r)
h3 (r)− h30 (r)

)}
(s− pH,κ)

− dκ (s) (s∇smH (s) + (1− s)∇smH (s))
1

h50 (r)

{
1,−h40 (r)

h50 (r)

}(
h4 (r)− h40 (r)
h5 (r)− h50 (r)

)
.

By the chain rule we have

dκ (s) s∇s

{
1

fS (s)

{
1

s
,−mH (s)

}(
h1 (r)− h10 (r)
h3 (r)− h30 (r)

)}
(s− pH,κ)

= dκ (s)∇s

(
h1 (r)− h10 (r)
h3 (r)− h30 (r)

)′ {
s− pH,κ

fS (s)
[1,−smH (s)]

}′

+ dκ (s)
s− pH,κ

fS (s)

{[
−1

s
− k (r) , k (r) smH (s)− s∇smH (s)

]}(
h1 (r)− h10 (r)
h3 (r)− h30 (r)

)
,

where k (r) = ∇sfS (s) /fS (s) as above. Similarly we have

dκ (s) (1− s)∇s

{
1

fS (s)

{
1

1− s
,−mL (s)

}(
h2 (r)− h20 (r)
h3 (r)− h30 (r)

)}
(s− pH,κ)

= dκ (s)∇s

(
h2 (r)− h20 (r)
h3 (r)− h30 (r)

)′{
s− pH,κ

fS (s)
[1,− (1− s)mL (s)]

}′

+dκ (s)
s− pH,κ

fS (s)

{
1

1− s
− k (r) , k (r) (1− s)mL (s)− (1− s)∇smL (s)

}(
h2 (r)− h20 (r)
h3 (r)− h30 (r)

)
.

Collecting terms and reorganizing yields the linearization

Ψ (r, h (r)) = a0 (r)
′ h (r) +∇sh (r)

′ b0 (r) + c0 (r)
′ h (r) , (36)
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where

a0 (r) = dκ (s)
s− pH,κ

fS (s)

{
−1

s
− k (r) ,

1

1− s
− k (r) , k (r)m (s)− e (s) , 0, 0

}
,

b0 (r) = dκ (s)
s− pH,κ

fS (s)
{1, 1,−m (s) , 0, 0} ,

c0 (r) = − dκ (s)

E [dκ (S)]
e (s) {0, 0, 0, 1,−pH,κ} ,

recalling that e (s) = s∇smH (s) + (1− s)∇smL (s) .
Evaluating the expectation of E

[
a0 (R)

′ h (R; η)
]
yields

E
[
a0 (R)

′ h (R; η)
]
=

∫
dκ (s)

s− pH,κ

fS (s)

[
−1

s
− k (r) ,

1

1− s
− k (r) , k (r)m (s)− e (s)

]
,

×

 fS (s; η)Eη [TY |S = s]
fS (s; η)Eη [ (1− T )Y |S = s]

fS (s; η)

 fS (s) ds

=

∫
dκ (s) (s− pH,κ)

[
−1

s
− k (r) ,

1

1− s
− k (r) , k (r)m (s)− e (s)

]

×

 Eη [TY |S = s]
Eη [ (1− T )Y |S = s]

1

 fS (s; η) ds

= Eη

[
υ1 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where

υ1 (r) =

{
(s− pH)

[
∇sfS (s)

fS (s)
m (s)− e (s)

]
, 0,

(s− pH)

(
−1

s
− ∇sfS (s)

fS (s)

)
, (s− pH)

(
1

1− s
− ∇sfS (s)

fS (s)

)}
.

From the analysis of β̂lsoe above we have

E
[
∇sh (R; η)

′ b0 (R)
]
= Eη

[
v2 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with
v2 (r) = (s− pH,κ) {∇sm (s) , 0, 0, 0}′ + {m (s) , 0,−1,−1}′ .
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Finally we evaluate the expectation of c0 (R)
′ h (R; η):

E
[
c0 (R)

′ h (R; η)
]
= −

∫
dκ (s)

E [dκ (s)]
e (s) (0, 0, 0, 1,−E [T | dκ (S) = 1])′ h (r; η) f0 (r) dr

= −
∫

dκ (s)

E [dκ (s)]
e (s) (Eη [dκ (S)T ]− Eη [dκ (S)]E [T | dκ (S) = 1]) f0 (r) dr

= −
{∫

dκ (s)

E [dκ (s)]
e (s) f0 (r) dr

}
Eη [dκ (S) (T − pH,κ)]

= −E [e (s)| dκ (s) = 1]Eη [dκ (S) (T − pH,κ)]

= Eη

[
v3 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where
v3 (R) = E [e (S)| dκ (S) = 1] {pH,κ,−1, 0, 0}′ .

The form of v1 (r) , v2 (r) and v3 (r) together imply a correction term of

δlepe (z) = −dκ (s)
∇sfS (s)

fS (s)
(y −m (s)) (s− pH,κ)

− dκ (s) (y −m (s))

− dκ (s)

{(
t

s

)
y −mH (s)

}
(s− pH,κ) + dκ (s)

{(
1− t

1− s

)
y −mL (s)

}
(s− pH,κ)

− E [e (S)| dκ (S) = 1] dκ (s) (t− pH,κ) ,

as claimed. Note that δlppe (z) + δlepe (z) = δlsoe (z) as would be expected.

B.4 Influence function derivation for β̂ase

The average spillover effect is given by

βase
0 = E [dκ (S) e (S)]

= E
[
dκ (S)∇s

{
h10 (R) + h20 (R)

h30 (R)

}
− dκ (S)

h30 (R)

{
h10 (R)

S
− h20 (R)

1− S

}]
,

where h10 (r) , h20 (r) and h30 (r) are as defined in (31) above. Linearizing the implied moment
function gives

Ψ (r, h (r)− h0 (r)) = dκ (s)∇s

 1

h30 (r)

[
1, 1,−h10 (r) + h20 (r)

h30 (r)

] h1 (r)− h10 (r)
h2 (r)− h20 (r)
h3 (r)− h30 (r)


− dκ (s)

h30 (r)

{
1

s
,− 1

1− s
,−

[
h10 (r)

sh30 (r)
− h20 (r)

(1− s)h30 (r)

]}
h1 (r)− h10 (r)
h2 (r)− h20 (r)
h3 (r)− h30 (r)

 .

12



Differentiating the first term in {·} with respect to s and collecting terms yields

Ψ (r, h (r)) = a0 (r)
′ h (r) +∇sh (r)

′ b0 (r) + c0 (r)
′ h (r) (37)

with h (r) = (h1 (r) , h2 (r) , h3 (r))
′ and

a0 (r) =
dκ (s)

fS (s)
(−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r))′ ,

b0 (r) =
dκ (s)

fS (s)
(1, 1,−m (s))′ ,

c0 (r) = −dκ (s)
fS (s)

(
1

s
,− 1

1− s
,− [mH (s)−mL (s)]

)
,

where

k (r) =
∇sfS (s)

fS (s)
, m (s) =

h10 (r) + h20 (r)

h30 (r)
, mH (s) =

h10 (r)

sh30 (r)
, mL (s) =

h20 (r)

(1− s)h30 (r)
.

Taking expectations of the first term in Ψ (r, h (r)) we have

E
[
a0 (R)

′ h (R; η)
]
=

∫
dκ (s)

fS (s)
(−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r))

×

 fS (s; η) sEη [Y |T = 1, S = s]
fS (s; η) (1− s)Eη [Y |T = 0, S = s]

fS (s; η)

 f0 (r) dr

=

∫
dκ (s) (−k (r) ,−k (r) ,−∇sm (s) +m (s) k (r))

×

 Eη [TY |S = s]
Eη [ (1− T )Y |S = s]

1

 fS (s; η) ds

= Eη

[
v1 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

where the second equality follows from the fact that fT |S (t| s; η) = st (1− s)1−t does not
depend on η and

v1 (r) = {−∇sm (s) +m (s) k (r) , 0,−k (r) ,−k (r)} .

To evaluate the second term of (37) we use integration by parts (with u(r) = f0 (r) b0 (r)
′

and v (r) = h (r; η)) to obtain a representation directly in terms of h (r; η). As in our analysis
of βlsoe above we use the fact that b0 (r) and h (r; η) vary in s alone, as well as the density
factorization f0 (r) = st (1− s)1−t f0 (s) , to get

E
[
∇sh (R; η)

′ b0 (R)
]
= 0−

∫
∇s

[
f0 (s) b0 (r)

′]h (r; η) ds
= Eη

[
v2 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

13



with
v2 (r) = {∇sm (s) , 0, 0, 0}′ .

This follows from the fact that

∇s

[
f0 (s) b0 (r)

′] = ∇s

[
dκ (s) (1, 1,−m (s))′

]
= dκ (s) (0, 0,−∇sm (s))′ .

Evaluating the expectation of the third term in (37) gives

E
[
c0 (R)

′ h (R; η)
]
= −

∫
dκ (s)

fS (s)

(
1

s
,− 1

1− s
,− [mH (s)−mL (s)]

)

×

 fS (s; η) smH (s; η)
fS (s; η) (1− s)mL (s; η)

fS (s; η)

 fS (s) ds

= −
∫
dκ (s)

(
1

s
,− 1

1− s
,− [mH (s)−mL (s)]

)

×

 Eη [TY |S = s]
Eη [ (1− T )Y |S = s]

1

 fS (s; η) ds

= Eη

[
υ3 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with

υ3 (r) =

{
mH (s)−mL (s) , 0,−

1

s
,

1

1− s

}
.

Together these calculations suggest a correction term of the form

δase (z) = −dκ (s)
∇sfS (s)

fS (s)
(y −m (s)) (38)

− dκ (s)

[{(
t

s

)
y −mH (s)

}
−
{(

1− t

1− s

)
y −mL (s)

}]
as claimed.

B.5 Influence function derivation for β̂lsie

The local segregation inequality effect (LSIE) is given by

βlsie
0 = βlsie

H − βlsie
L

14



where

βlsie
H = E

[
dκ (S)

pH,κ

{mH (S) + S∇smH (S)} (S − pH,κ)

]
= E

[
dκ (S)

{
1

h40 (R) /h50 (R)

(
h10 (R)

Sh30 (R)
+ S∇s

{
h10 (R)

Sh30 (R)

})(
S − h40 (R)

h50 (R)

)}]
and

βlsie
L = E

[
dκ (S)

1− pH,κ

{−mL (S) + (1− S)∇smL (S)} (S − pH,κ)

]
= E

[
dκ (S)

1− h40 (R) /h50 (R)

(
− h20 (R)

(1− S)h30 (R)
+ (1− S)∇s

{
h20 (R)

(1− S)h30 (R)

})(
S − h40 (R)

h50 (R)

)]
,

with h (r) = (h1 (r) , h2 (r) , h3 (r) , h4 (r) , h5 (r))
′ as defined in (31) above.

We begin by analyzing the first component of the estimand, βlsie
H . Linearizing the moment

defining βlsie
H we get

Ψ (r, h (r)− h0 (r)) =

dκ (s)

{
1

fS (s) s

s− pH,κ

pH,κ

,− 1

fS (s)

s− pH,κ

pH,κ

mH (s) ,

− 1

E [dκ (S)]

s

p2H,κ

[mH (s) + s∇smH (s)] ,
1

E [dκ (S)]

s

pH,κ

[mH (s) + s∇smH (s)]

}

×


h1 (r)− h10 (r)
h3 (r)− h30 (r)
h4 (r)− h40 (r)
h5 (r)− h50 (r)


+ dκ (s)

s

pH,κ

∇s

{
1

fS (s)

{
1

s
,−mH (s)

}(
h1 (r)− h10 (r)
h3 (r)− h30 (r)

)}
(s− pH,κ) .

Differentiating the second term in {·} with respect to s yields

dκ (s)
s

pH,κ

∇s

{
1

fS (s)

{
1

s
,−mH (s)

}(
h1 (r)
h3 (r)

)}
(s− pH,κ)

= ∇s

(
h1 (r)
h3 (r)

)′ [
dκ (s)

s

pH,κ

s− pH
fS (s)

{
1

s
,−mH (s)

}]′
+

(
h1 (r)
h3 (r)

)′

dκ (s)
s

pH,κ

s− pH,κ

fS (s) s
{−1/s− k (r) , k (r) smH (s)− s∇smH (s)}′ ,

where k (r) = ∇sfS (s) /fS (s) as above.
Collecting terms allows us to write

Ψ (r, h (r)) = a0 (r)
′ h (r) +∇sh (r)

′ b0 (r) + c0 (r)
′ h (r) ,
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with

a0 (r) = dκ (s)

{
− 1

pH,κ

s− pH,κ

fS (s)
k (r) , 0,

1

pH,κ

s− pH,κ

fS (s)
(k (r) smH (s)− s∇smH (s)−mH (s)) , 0, 0

}
b0 (r) = dκ (s)

1

pH,κ

s− pH
fS (s)

{1, 0,−smH (s) , 0, 0}

c0 (r) = − dκ (s)

E [dκ (S)]

s

pH,κ

[mH (s) + s∇smH (s)]

{
0, 0, 0,

1

pH,κ

,−1

}
.

Taking the expectation of the first component of Ψ (R, h (R; η)) yields

E
[
a0 (R)

′ h (R; η)
]

=

∫ ∑
t=0,1

dκ (s)

{
− 1

pH,κ

s− pH,κ

fS (s)
k (r) ,

1

pH,κ

s− pH,κ

fS (s)
(k (r) smH (s)− s∇smH (s)−mH (s))

}
×

(
fS (s; η) sEη [Y |T = 1, S = s]

fS (s; η)

)
st (1− s)1−t fS (s) ds

=

∫
dκ (s)

{
−s− pH,κ

pH,κ

k (r) ,
s− pH,κ

pH,κ

(k (r) smH (s)− s∇smH (s)−mH (s))

}
×

(
sEη [Y |T = 1, S = s]

1

)
fS (s; η) ds

= Eη [v1 (R) dκ (S) {1, T, TY, (1− T )Y }] ,

where

v1 (r) =

{
s− pH,κ

pH,κ

[−mH (s) + sk (r)mH (s)− s∇smH (s)] , 0,−s− pH,κ

pH,κ

k (r) , 0

}
.

To take the expectation of the second component of Ψ (r, h (r)) we use integration by
parts:

E
[
∇sh (R; η)

′ b0 (R)
]
=

∫
f0 (r) b0 (r)

′ [∇sh (r; η)] dr

=

∫ s=1

s=0

f0 (s) b0 (r)
′ [∇sh (r; η)] ds

=
[
f0 (s) b0 (r)

′ h (r; η)
]1
0
−

∫
∇s

[
f0 (s) b0 (r)

′]h (r; η) dr
= 0−

∫
∇s

[
f0 (s) b0 (r)

′]h (r; η) dr
= Eη

[
v2 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with

v2 (r) =
1

pH,κ

(s− pH,κ) {mH (s) + s∇smH (s) , 0, 0, 0}′ + dκ (s)

pH,κ

{smH (s) , 0,−1, 0}′ .
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This follows from the fact that

∇s

[
f0 (s) b0 (r)

′] = ∇s

[
fS (s) dκ (s)

1

pH,κ

s− pH,κ

fS (s)
{1, 0,−smH (s) , 0, 0}

]
= ∇s

[
dκ (s)

s− pH,κ

pH,κ

{1, 0,−smH (s) , 0, 0}
]

=
dκ (s)

pH,κ

(s− pH) {0, 0,−mH (s)− s∇smH (s) , 0, 0}

+
dκ (s)

pH,κ

{1, 0,−smH (s) , 0, 0} .

Finally the expectation of the third term is given by

E
[
c0 (R)

′ h (R; η)
]
= −

∫
dκ (s)

E [dκ (S)]

s

pH,κ

[mH (s) + s∇smH (s)]

{
1

pH,κ

,−1

}(
Eη [dκ (S)T ]
Eη [dκ (S)]

)
f0 (r) dr

= −
∫

dκ (s)

E [dκ (S)]

s

pH,κ

[mH (s) + s∇smH (s)]

(
Eη [dκ (S)T ]

pH,κ

− Eη [dκ (S)]

)
f0 (r) dr

= −

[∫
dκ (s)

E [dκ (S)]

s

p2H,κ

[mH (s) + s∇smH (s)] f0 (r) dr

]
Eη [dκ (S) (T − pH,κ)]

= − 1

pH,κ

E
[
S

pH,κ

[mH (S) + S∇smH (S)]

∣∣∣∣ dκ (S) = 1

]
Eη [dκ (S) (T − pH,κ)]

= Eη

[
v3 (R) dκ (S) {1, T, TY, (1− T )Y }′

]
,

with

v3 (r) = − 1

pH,κ

E
[
S

pH,κ

[mH (S) + S∇smH (S)]

∣∣∣∣ dκ (S) = 1

]
{−pH,κ, 1, 0, 0, 0} .

The correction term portion of the efficient influence function will take the form δlsie (z) =
δlsieH (z)− δlsieL (z). The forms for v1 (r) , v2 (r) and v3 (r) given above suggest that

δlsieH (z) = −dκ (s)
pH,κ

∇sfS (s)

fS (s)
(ty − smH (s)) (s− pH,κ)

− dκ (s)

pH,κ

(ty − smH (s))

− dκ (s)

pH,κ

E
[
S

pH,κ

[mH (S) + S∇smH (S)]

∣∣∣∣ dκ (S) = 1

]
(t− pH,κ) .

The second part of the correction term, δlsieL (z), can be derived similarly to the first. This
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derivation, which is omitted, yields

δlsieL (z) = − dκ (s)

1− pH,κ

∇sfS (s)

fS (s)
((1− t) y − (1− s)mL (s)) (s− pH,κ)

− dκ (s)

1− pH,κ

((1− t) y − (1− s)mL (s))

− .
dκ (s)

1− pH,κ

E
[

1− S

1− pH,κ

[−mL (S) + (1− S)∇smL (S)]

∣∣∣∣ dκ (S) = 1

]
(t− pH,κ) ,

and hence δlsie (z) = δlsieH (z)− δlsieL (z) equal to

δlsie (z) = δlsieH (z)− δlsieL (z)

= −dκ (s)
pH,κ

∇sfS (s)

fS (s)
(ty − smH (s)) (s− pH,κ)

+
dκ (s)

1− pH,κ

∇sfS (s)

fS (s)
((1− t) y − (1− s)mL (s)) (s− pH,κ)

− dκ (s)

pH,κ

(ty − smH (s)) +
dκ (s)

1− pH,κ

((1− t) y − (1− s)mL (s))

− dκ (s)

pH,κ

E
[
S

pH,κ

[mH (S) + S∇smH (S)]

∣∣∣∣ dκ (S) = 1

]
(t− pH,κ)

+
dκ (s)

1− pH,κ

E
[

1− S

1− pH,κ

[−mL (S) + (1− S)∇smL (S)]

∣∣∣∣ dκ (S) = 1

]
(t− pH,κ)

as claimed.
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