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A. Munro, Gabriel Okasa, Seth Richards-Shubik, Xun Tang and Yi Zhang for their generous feedback and
input on earlier drafts. A special thanks to Winfried Hochstättler for continuously pointing out the connec-
tion to the discrete mathematics literature and to Michael Jansson for help and insight into the nature of
our testing problem. The paper has also benefited from discussions about the theory of strategic network
formation with Sanjeev Goyal and Matt Jackson, multiple rounds of exceptionally detailed comments from
the co-editor, as well as the feedback and suggestions provided by four anonymous referees. All the usual
disclaimers apply. Financial support from NSF grant SES #1357499 is gratefully acknowledged by the second
author. Portions of the research reported here were also undertaken during a visit to CEMFI by the second
author with support from the Spanish State Research Agency under the Maŕıa de Maeztu Unit of Excellence
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Abstract

Consider a setting where N players, partitioned into K observable types, form a di-
rected network. Agents’ preferences over the form of the network consist of an arbitrary
network benefit function (e.g., agents may have preferences over their network central-
ity) and a private, or dyadic, component which is additively separable in own links.
This latter component allows for unobserved heterogeneity in the costs of sending and
receiving links across agents (respectively out- and in- degree heterogeneity) as well as
homophily/heterophily across the K types of agents. In contrast, the network benefit
function allows agents’ preferences over links to vary with the presence or absence of
links elsewhere in the network (and hence with the link formation behavior of their
peers). In the null model which excludes the network benefit function, links form inde-
pendently across dyads in the manner described by Charbonneau (2017) among others.
Under the alternative there is interdependence across linking decisions (i.e., strategic
interaction). We show how to test the null with power optimized in specific directions.
These alternative directions include many common models of strategic network forma-
tion (e.g., “connections” models, “structural hole” models etc.). Our random utility
specification induces an exponential family structure under the null which we exploit
to construct a similar test which exactly controls size (despite the the null being a
composite one with many nuisance parameters). We further show how to construct
locally best tests for specific alternatives without making any assumptions about equi-
librium selection. To make our tests feasible we introduce a new MCMC algorithm for
simulating the null distributions of our test statistics.

JEL Codes: C31, C57
Keywords: Network formation, Locally Best Tests, Similar Tests, Exponential Fam-

ily, Incomplete Models, Degree Heterogeneity, Homophily, Binary Matrix Simulation, Edge
Switching Algorithms, Markov Chain Monte Carlo, Partitioned Graph
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In an economic model of directed network formation agents purposefully direct links

to one another in order to maximize utility. A payo↵ function maps all possible network

configurations into agent utilities. Agents use this payo↵ function to weigh the benefits of

directing any particular link against the costs of doing so. A Nash Equilibrium (NE) network

arises when all agents link choices are individually optimal given the choices made by other

agents (e.g. Bala and Goyal, 2000).

Important examples of directed link formation in economics include firms choosing their

suppliers (e.g., Atalay et al., 2011; Amelkin and Vohra, 2023), social media users choosing who

to follow (e.g., Grandjean, 2016), adolescents selecting friends (e.g., Christakis et al., 2020),

banks extending credit (or not) to firms (e.g., Marotta et al., 2015), and village households

seeking assistance from peers in times of economic stress (e.g., De Weerdt, 2004). Jackson

et al. (2017) present many other examples of networks in economics. Such data abound in

the other social sciences as well (e.g., Apicella et al., 2012).

The utility an agent receives when she directs a link to another agent can be usefully

divided into two components.1 The first component is “private”, or, more precisely dyadic.

It is invariant to the presence or absence of other links in the network.2 The second component

is “social”, or varying with the presence or absence of other links in the network.

An example of the first component is the payo↵ associated with a homophilous link

(McPherson et al., 2001). This payo↵ component only depends on the attributes of the

sending (ego) and receiving (alter) agents. Another example is associated with “degree

heterogeneity”: agents may vary systematically in their propensity to direct links, or in their

attractiveness as link targets for others. Finally we might posit that the payo↵ from any

particular link varies for idiosyncratic reasons, as in other random utility models (RUMs) of

discrete choice (McFadden, 1974). Empirical models of network formation with these features

were formally studied by Charbonneau (2017), Graham (2017), Dzemski (2018), Jochmans

(2018) and Yan et al. (2018). These models are fundamentally dyadic: agents’ network payo↵s

are a simple sum of link-specific payo↵s and, crucially, invariant to the linking behavior of

other agents.

In some settings, however, agents may also value indirect links. For example, an arc from

j to k may incidentally reduce the shortest path length from i to k, allowing agent i better

access to k’s information (e.g., Jackson and Wolinsky, 1996; Bala and Goyal, 2000). While

arc jk is valued by i, this value is not incorporated into j’s decision to direct the arc or not.

Preferences of this type mean agents’ decisions impose externalities on others. The detection

1In digraphs, or directed networks, it is customary to refer to edges as “arcs”. Here we use the terms link,
edge, arc, friendship, relationship etc. interchangeably.

2Note “other links” include those possibility directed by the sending agent to targets other than the one
at hand.
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of such externalities is the subject of this paper. Our setting is NE directed networks, as

elegantly studied by Bala and Goyal (2000).3

Payo↵ functions with externalities feature prominently in formal theoretical models of

network formation (cf., Jackson, 2008; Goyal, 2023). Equilibrium in network formation mod-

els with externalities may be analyzed using the tools of game theory. Indeed such models are

typically called strategic network formation models. In what follows we say a network for-

mation model is strategic if agents value indirect links or, equivalently, their optimal linking

strategy varies with the linking behavior of others.

When links made by one agent alter the incentives for link formation faced by others,

equilibrium network configurations may diverge from socially optimal ones (Goyal, 2023).

This, in turn, suggests that well-designed interventions might make agents better o↵. In con-

trast, without a wedge between the private and social benefits of link formation, equilibrium

and socially optimal networks will coincide. This paper introduces a test for whether agents’

own incentives to form links vary with the choices of others. A rejection of our test, under the

maintained model, indicates the presence of externalities, with their attendant implications

for optimal policy design.

An overview of the test and its uses

Strategic network formation games are complicated. In a directed network with N agents,

there are n = N(N � 1) strategic decisions to make, and hence a total of 2n possible action

profiles or network configurations; many of which may be Nash Equilibria (NE). In the sem-

inal model of directed network formation introduced by Bala and Goyal (2000), for example,

with N = 5 agents there are 1, 069 NE networks. Because of this combinatoric complexity,

methods pioneered for the econometric analysis of discrete games with just a few players are

not directly applicable – at least in practice – to network formation games.

In recent work, Christakis et al. (2020), Mele (2017), Miyauchi (2016), de Paula et al.

(2018) and Sheng (2020) each proposed empirical models of strategic network formation.4

Each of these models impose particular restrictions on the form of the network payo↵ func-

tion, the nature of any unobserved heterogeneity, and/or make assumptions about equilib-

rium selection. For example, Christakis et al. (2020) and Mele (2017) resolve incompleteness

by assuming agents form links sequentially, allowing for the application of likelihood-based

methods. Miyauchi (2016) requires a super-modular payo↵ function, de Paula et al. (2018)

a payo↵ function which varies only with local network structure, while Sheng (2020) focuses

3Ideas presented below could be adapted to settings requiring other solution concepts, such as pairwise
stable undirected networks with, or without, transfers (e.g., Bloch and Jackson, 2007; Jackson and Wolinsky,
1996).

4de Paula (2020) surveys work in this area and provides additional references.
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on agents with a taste for transitivity. None of these papers incorporate agent-specific un-

observed heterogeneity. Even with these restrictions, estimating the identified set for the

parameters indexing the network payo↵ function in these models is challenging, as is con-

ducting inference.5

Unlike this prior work, we do not consider set identification in this paper, focusing instead

on the more modest goal of externality detection. Are preference externalities present or

not? With this target question in mind, we introduce an econometric model of strategic

network formation which simultaneously allows (i) for agents to value both direct and indirect

links (i.e., a freely specified network benefit function), (ii) for the systematic returns to

link formation to vary with observed dyad attributes, and (iii) for unobserved agent-specific

correlated degree heterogeneity. While, relative to prior work, our focus is narrower, our

model is richly featured.

Our setup maps neatly into the “costs versus benefits” payo↵ structures emphasized in

theoretical models of strategic network formation (see, for example, Jackson (2008, Chapters

6 & 11) and Goyal (2023, Chapter 3)). Examples of models – (i) suitably enriched to include

covariates, unobserved heterogeneity, and random link utility and (ii) adapted (if needed)

to match our use of NE as a solution concept – encompassed by our framework include the

“connections” model (e.g., Jackson and Wolinsky, 1996; Bala and Goyal, 2000), “structural

hole” or “bridging” models (e.g., Goyal and Vega-Redondo, 2007; Kleinberg et al., 2008)

and the favor exchange or “supported links” model of Jackson et al. (2012). We can also

accommodate tastes for reciprocity, transitivity, network centrality and other forms of indirect

link valuation.

We begin with a baseline dyadic logistic regression model for directed networks. Variants

of this model have featured in applied social science research for decades (e.g., Bennett

and Stam, 2000; De Weerdt, 2004). Early formal econometric analyses include those by

Charbonneau (2017), Jochmans (2018) and Yan et al. (2018). Work that builds upon on

large-N , large-T panel data research (e.g., Fernández-Val and Weidner, 2016) as well as

conditioning arguments used in fixed-T panel settings (e.g., Chamberlain, 1980, 2010).

The dyadic logit model is useful for modeling homophily and degree heterogeneity. We

augment this model with a network payo↵ term which additionally allows agents to value

indirect links. The resulting model is quite complicated. Formally it is a very large complete

information simultaneous move game. While we assume that the observed network is a NE,

5We wish to emphasize that these “critiques” reflect the inherent di�culty of the problem, not any deficien-
cies in the above cited papers. Indeed these researchers have shown considerable ingenuity in proposing ways
to make methods designed for games with just a few players scale to the considerably more complicated many-
player network setting. We also comment that these papers don’t all use some same solution/equilibrium
concept.
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we make no auxiliary equilibrium selection assumptions.6

Let K be the number of support points in the distribution of observed agent attributes

and N the number of agents in the network (That K is finite with K ⌧ N is a strong

assumption; one we return to below). Our model includes (i) K2 “homophily” parameters,

collected in the K ⇥K matrix ⇤
def

⌘ [�kl] for k, l = 1 . . . K, capturing how link returns vary

systematically with ego and alter attributes (we define �
def

⌘ vec (⇤0)), (ii) twoN⇥1 parameter

vectors A
def

⌘ [Ai] and B
def

⌘ [Bi] for i = 1 . . . N , capturing, respectively, agent-specific out-

and in-degree heterogeneity, and (iii) a scalar parameter, �, measuring the extent to which

agents value indirect links. Our model also includes (iv) an “equilibrium selection” function

(This function assigns probabilities to all NE equilibria for every possible realization of the

n = N(N � 1) link-specific random utility shocks, U
def

⌘ [Uij] for i 6= j and i, j = 1 . . . N).

Since we are agnostic about which NE is selected in the presence of multiple equilibria, this

function is not specified by the analyst, but enters our analysis abstractly (see Theorem 1.1

below).

We treat � = (�0
,A

0
,B

0)0 as a (high dimensional) nuisance parameter and the equilibrium

selection mechanism as a nuisance function. This focuses our attention solely on �. While,

in principle, an analysis of the identified set for � might be possible, we instead focus on the

one-sided hypothesis of H0 : � = 0 versus H1 : � > 0. Or, put di↵erently, we identify the

sign of �.7

Our test involves comparing a statistic of the observed network (e.g., its transitivity index)

with a critical value derived from a reference distribution. Natural questions are: (i) which

reference distribution? (ii) how do I compute the critical value? (iii) which network statistic

should I use? We provide answers to all three of these questions.

There is a long tradition in empirical work of using the Ërdos-Rényi model to generate

the reference distribution. This invariably results in “straw man” tests since few real world

networks are well-described by the Ërdos-Rényi model. To avoid spurious rejection of the no

strategic interaction null, it is therefore important to use a richer baseline model; one that

might actually describe a real world network. The dyadic logit regression model with agent-

specific fixed e↵ects is one such model. This model is commonplace in empirical network

analysis (e.g., Bennett and Stam, 2000; De Weerdt, 2004; Ho↵, 2005; Charbonneau, 2017;

6More precisely the observed network is either a pure strategy NE or in the support of a mixed strategy
NE (in fact our results hold under an even weaker notion of equilibrium, as explained below).

7Our focus on one-sided hypotheses results in a particularly clean exposition and analysis, allows for the
statement of some optimality results, and covers our main examples of interest. A researcher’s specification of
the network benefit function typically suggests whether the null-alternative pair H0 : � = 0 versus H1 : � > 0
or H0 : � = 0 versus H1 : � < 0 is most appropriate. Since a researcher can always replace a chosen network
benefit function with its negative, we focus on the former case without loss of generality. Finally, as will
become obvious, much of what follows extends naturally to two-sided hypotheses.
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Bartolucci, 2024) (Perhaps because it represents a natural adaptation of familiar panel data

logit models to the network setting). Like its panel counterpart, the dyadic logit model

provides a simple, easy to interpret, and random utility based, model for describing edge

formation. It is su�ciently flexible to match any observed in- and out-degree sequence as

well as rich patterns of homophilous linking. These features are important since heavy-

tailed degree distributions characterize many real world networks, as does homophily (e.g.,

Barabási, 2016; McPherson et al., 2001). While recent research explores more flexible models

of dyadic link formation (e.g., Gao, 2020; Chen et al., 2021), the logit model remains a

workhorse for practitioners.

Some models of strategic network formation tend to induce link clustering (e.g., Jackson

et al., 2012), while others skewed degree distributions (e.g., Bala and Goyal, 2000). These

same patterns of link formation can also arise for decidedly non-strategic reasons due to ho-

mophily and/or degree heterogeneity. The dyadic logit model with agent-specific ego (sender)

and alter (receiver) e↵ects therefore imposes a more stringent test for the no strategic inter-

action null. A further payo↵ is that our test can do double duty as an omnibus specification

test for a widely-used method of network data modeling.

Because � – the parameter indexing the dyadic logit null model – may range freely across

its parameter space when � = 0 our null hypothesis is a composite one. Test size equals

the supremum of the rejection rate across all data generating processes (DGPs) with � = 0.

Because � is high dimensional, the null model space is very large and constructing a test with

uniformly good size and power properties is non-trivial (cf., Moreira, 2009). An additional

non-standard feature of our testing problem is that the nuisance equilibrium selection function

is only present under the alternative (cf., Andrews and Ploberger, 1994).

Under the logistic assumption on the random component of link utility, using a classic

exponential family conditioning argument, we introduce a family of similar tests. Similarity

means that the size of our test equals ↵ regardless of where we are in the null model space.

Put di↵erently, our test is correctly-sized under null models with ⇤ values that result in “very

little” homophily as well as under null models with ⇤ values that result in “lots of” homophily.

Similarity also means that the size of our test does not vary with the configuration of the in-

and out-degree heterogeneity vectors, A and B.

We provide an exact characterization of the null distributions of the test statistics in this

family and, crucially, a feasible Markov Chain Monte Carlo (MCMC) algorithm for simulat-

ing from them. Simulating the null distribution requires drawing a binary adjacency matrix

uniformly at random from the set of all adjacency matrices satisfying certain constraints.

Constrained binary matrix simulation has numerous applications in biology, psychology, ecol-

ogy and other fields (cf., Sinclair, 1993; Blitzstein and Diaconis, 2011). Unfortunately, extant
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simulation algorithms cannot be used to simulate the null distribution needed here; our al-

gorithm is therefore novel and of independent interest.

We also derive the form of the locally best test under the alternative H1 : � > 0. Remark-

ably we are able to do this while remaining agnostic about equilibrium selection. Finally,

because our test is exact, we also side-step di�cult issues that arise when undertaking asymp-

totic analysis in the single network context (see Graham (2020) for references and discussion).

Possible applications of the methods introduced in this paper include:

1. Assessing model adequacy or specification testing: The researcher believes the

baseline null model is adequate for the setting at hand, but wishes to report an omnibus

goodness-of-fit test (similar to the practice of reporting the Sargan-Hansen J-Statistic

in the context of GMM estimation). While a rejection in this setting is interpreted

as evidence against the baseline null model, it not interpreted as evidence in favor of

any particular alternative. Our use of “classic” su�ciency arguments separates the the

information in the data relevant for estimation of � – the model parameter under the

null – from that relevant for assessing model adequacy (cf., Barndor↵-Nielsen and Cox,

1994, p. 29). As is well-known, it is not possible to construct a test with good power

in all directions of mis-specification (Lehmann and Romano, 2005, Theorem 14.6.1).

The researcher’s choice of test statistic should therefore, at least heuristically, reflect

those directions of mis-specification of most concern. A failure to reject in this setting

suggests that the dyadic logistic regression model is correctly specified.8

2. Detecting strategic interaction of a specific form: The researcher’s primary

interest is in the specified model and she wishes to sign identify �. In this example

the analysts undertakes empirical work under the maintained assumption that the true

model is either in the null model space or in the specified alternative model space. The

data are used to determine which case prevails. This knowledge is actionable. For

example, knowledge that � > 0 may be su�cient to justify policies which subsidize link

formation.

3. Cataloging “unusual” network features: The researcher wishes to assess whether

certain features of the network in hand are “unusual”. In contrast to the first case, here

the researcher suspects that the network in hand is not well-described by the baseline

one, but, in contrast to the second case, she remains somewhat agnostic about the

form of the true model. The null model defines a set of reference networks with certain
8Dyadic regression analysis has a long history in economics going back, at least, to the work of Tinbergen

(1962). See Graham (2020) for a survey and references. We note that this use case has the potential to
introduce pre-testing bias if researchers only report their results conditional on accepting the null.
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properties identical to those in the network of interest (e.g., the in- and out- degree se-

quences, numbers of links between agents with di↵erent covariate configurations). The

researcher can compare features of interest in their network (e.g., diameter, reciprocity,

support) with their distributions across the null reference set to assess whether their

network is, indeed, “unusual”. There is a long history, as noted earlier, of comparing

network statistics to their expected value under an Ërdos and Rényi null. Here we pro-

vide a more realistic reference null distribution. See Holland and Leinhardt (1976) for a

discussion of this type of analysis in sociology, Section 5 of Jackson et al. (2012) for an

example from economics; Milo et al. (2002) for an example from computational biology,

and Gotelli (2000) for a discussion of applications to species co-occurrence analysis in

ecology. Researchers undertaking this last type of analysis might be best described as

doing structured data exploration.

While our focus is on strategic network formation, it seems likely that the ideas developed

below could be adapted to design tests appropriate for other incomplete econometric models.

In recent work Chen et al. (2018) and Kaido and Zhang (2019) introduced likelihood ratio

type tests applicable to incomplete models. Our test, in contrast, is a conditional score test.

Conditioning, while requiring exponential family structure, is helpful in settings with a high

dimensional nuisance parameter (cf., Moreira, 2009). Our score-based approach may also

have computational advantages in settings where likelihood evaluation under the alternative

is di�cult (e.g., when enumeration of all NE is impossible).

Outline of the paper

Section 1 introduces our model of strategic network formation. We begin by defining agent

preferences and characterizing equilibrium networks. Section 2 outlines our approach to test-

ing. We first characterize the exact distribution of any statistic of the adjacency matrix under

the null. Next we derive the form of the locally best test statistic for specific alternatives.

Although we characterize the exact null distribution of our test statistics, for reasons of prac-

tically, we approximate this distribution by simulation. Section 3 outlines our new Markov

Chain Monte Carlo (MCMC) algorithm for generating random draws from the required null

distribution. Section 4 illustrates our methods in the context of the Nyakatoke risk-sharing

network studied by De Weerdt (2004) and others. Section 5 finishes with a short discussion of

limitations of our methods as well as a few thoughts on possible areas for additional research.

Proofs as well as some Monte Carlo simulation results are collected in a Supplemental

Web Appendix. This appendix also includes a discussion of some additional applications of

our MCMC simulation algorithm.
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Readers interested primarily in applications can read Section 1, the first part of Section 2,

and the empirical illustration of Section 4. The balance of the paper can be read later (perhaps

after viewing the Python Jupyter Notebook available in the supplemental materials).

1 An family of empirical models of strategic network

formation

1.1 Notation and setup

A directed graph G(V ,A) consists of a set of vertices (agents) V = {1, . . . , N} and a set of

ordered pairs of nodes, respectively called egos and alters, A = {(i, j), (k, l), . . .} for i 6= j,

k 6= l, and i, j, k, l 2 N . The elements of A correspond to those arcs, or directed links,

present in G(V ,A).

In what follows we typically work with the adjacency matrix D = [Dij] where

Dij =

(
1 if ij 2 A

0 otherwise
. (1)

Since we rule out self-links, the diagonal of D consists of structural zeros.

Let G� ij denote the network obtained by deleting link ij from G (if present), and G+ ij

the network one gets after adding this link (if absent). Let D ± ij denote the adjacency

matrix associated with the network obtained by adding/deleting link ij from G.

The set of all 2N(N�1) possible adjacency matrices on N labeled vertices is denoted by

DN . Hence d 2 DN is a feasible network wiring or, equivalently, a game outcome. Let di be

the ith row of d, or a pure strategy selection for agent i (i.e., a binary vector indicating which

edges she chooses to direct). A pure strategy profile for all players other than i is denoted

by d�i. We will sometimes refer to “players other than i” as i’s peers.

For each agent there are M
def

⌘ 2N�1 possible actions, corresponding to all possible

configurations of links she may direct towards her peers. A mixed strategy for agent i,

�i = (⇡1i, ⇡2i, . . . , ⇡Mi)
0, is probability distribution on these M possible pure strategy se-

lections; � = (�1, �2, . . . , �N)
0 is a mixed strategy profile for all N agents, while ��i is the

strategy profile of agent i’s peers.

8



1.2 Payo↵ function

The utility or payo↵ agent i gets from network d is

⌫i (di,d�i; ✓,Ui) = �0gi (d)| {z }
Network Benefit

�

X

j

dijcij (Xi, Xj; �, Uij)

| {z }
Link “Costs” (i.e., private utility)

(2)

with gi (d) a known, but not necessarily closed-form, function of the network adjacency

matrix, normalized such that gi (0) = 0, ✓ = (�, �0)0, and the link “costs” function taking the

form

cij (Xi, Xj; �, Uij) = � [Ai +Bj +X
0
i
⇤0Xj � Uij] (3)

where Xi is a K ⇥ 1 vector of mutually exclusive group membership indicators that is ob-

served by the econometrician and Ui = (Ui1, . . . , Uii�1, Uii+1, . . . , UiN)
0 is agent i’s vector

of idiosyncratic logistic preference shocks over the N � 1 possible links she can direct (and

U = (U0
1, . . . ,U

0
N
)0).9 All agents observe their own, as well as their peers’, preference shock

vectors. As is standard in game theory (e.g., Fudenberg and Tirole, 1998), we use, in a

small abuse of notation, ⌫i (�i, ��i; ✓,Ui) to denote agent i’s expected utility under the mixed

strategy profile � = (�i, ��i).

The first term in (2) captures how agent i’s utility varies with the entire structure of the

network; this may include benefits from direct, as well as indirect connections. The second

term in (2) captures the purely private benefits to i associated with directing an arc to j.

That is, the component of utility associated with arc ij that does not vary with the presence

or absence of links elsewhere in the network.

In theoretical work gi (d) is often called the network benefit function, while

cij (Xi, Xj; �, Uij) would be typically associated with the cost of forming edge ij (e.g., Jack-

son, 2008; Goyal, 2023). These costs are generally assumed constant in theory research, while

– as is appropriate given the empirical context – they are heterogeneous across agents and

links here.10 The placement of a negative sign in front of the second term in (2) is in keep-

ing with the “costs” nomenclature of the theory literature, but is without loss of generality:

�cij (Xi, Xj; �, Uij) is simply the portion of the payo↵ i gets from directing an edge to j that

is invariant to all other linking decisions.

While the benefit-cost nomenclature is useful for developing intuitions about the form

of NE in this setting, to reiterate, what is essential here is that the first term may vary

9More generally Xi enumerates the support points of a collection of (observed) discrete agent-specific
regressors (or a partition of this support into K regions).

10Johnson and Gilles (2000) study the implications of cost heterogeneity on equilibrium network structure
in the “connections” model.
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arbitrarily with d, and hence with peer actions, while the second term is invariant to peers’

actions and, furthermore, additively separable in own actions. In what follows we call the

(negative of the) jth summand in the second part of (2) the baseline utility that i gets from

directing edge ij.

Baseline utility

Considering baseline utility first, we see it is increasing in the heterogeneity terms, assumed

unobserved by the econometrician, Ai and Bj. Agents with high values of out-degree het-

erogeneity Ai get a large amount of baseline utility from any link they send. In a social

network context high Ai agents are “extroverts”. Agents with high in-degree heterogeneity

Bj, in contrast, are especially attractive targets, or alters, for links sent by others. In a social

network high Bj agents are “prestigious” or “popular”.11

The X
0
i
⇤0Xj

def

⌘ W
0
ij
�0 term allows baseline utility to depend on whether agents assorta-

tively match on their attributes (we define Wij

def

⌘ (Xi ⌦Xj) and recall that �
def

⌘ vec (⇤0)).

The elements of the K ⇥K matrix ⇤ = [�kl] parameterize the systematic utility generated

by links, say, from group k to group l. For example, in a social network girls might, all things

equal, prefer other girls as friends. The ⇤0 matrix parameterizes homophily (or heterophily)

of this type.

In our fixed-N setting {Ai}
N

i=1 and {Bi}
N

i=1 are fixed-dimensional parameters. We further

treat {Xi}
N

i=1 as non-stochastic in what follows. Note that, as in fixed-e↵ect panel data

analysis, {(Ai, Bi)0}
N

i=1 and {Xi}
N

i=1 may freely correlate.12

The final component of baseline utility is idiosyncratic; we assume that the {Uij}i 6=j are

independent and identically distributed (iid) logistic random variables. The logistic assump-

tion generates exponential family structure which we exploit when forming our test.

Equation (2) with � = 0 gives agent preferences under our baseline or null model (essen-

tially the dyadic link formation model studied by Charbonneau (2017)). This model, when

fitted by maximum likelihood, can successfully match many features of real world networks.

Specifically arbitrary in- and out-degree sequences and assortative linking patterns on discrete

agent attributes (cf., Graham, 2020). The model cannot accommodate homophilous sorting

on latent attributes (a limitation which may a↵ect the interpretation of a test rejection). It

also maintains a logistic assumption on Uij, a restriction relaxed by Gao (2020).

While (2) with � = 0 underpins a growing empirical literature on networks, we are

11Alternatively we can think of high Ai agents as being able to direct links at low cost, and high Bj agents
as being low cost alters.

12An implication is that {(Ai, Bi, X
0
i)

0
}
N
i=1 need not be i.i.d. There is no requirement, for example, that

the agents in the network are a random sample from some population.
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Figure 1: Network benefit function examples

Source: Authors’ calculations.
Notes: Panel [a]: agent i is a bridge from k to j and agent l is a bridge from j to k. Panel
[b]: edge ij is supported by agent k. Panel [c]: adding edge ij generates a transitive triad.

especially interested in settings where this model does not provide a good description of the

network in hand.

Network benefit function

When � > 0, the first term in (2) – the network benefit function gi(d) – enriches the baseline

model to allow agent preferences over links to vary with the presence or absence of links

elsewhere in the network. The researcher is free to specify the network benefit function as

desired. A few selected examples, drawn from recent theoretical work on strategic network

formation, gives a sense of the range of possibilities.

Example 1.1. (Connections) In a seminal paper, Jackson and Wolinsky (1996), intro-

duced the connections model. In a directed variant, Bala and Goyal (2000) set gi (d) =
P

i 6=j
�

⇣
`ij

⇣
d̃

⌘⌘
where d̃ is the undirected network obtained from d (i.e., d̃ =

h
d̃ij

i

with d̃ij = 1 � (1� dij) (1� dji)), � : {1, 2, . . . , N � 1} ! R is a known function with

� (k) > � (k + 1) > 0 for any k = 1, 2, . . . , N � 1, and `ij

⇣
d̃

⌘
the shortest path length be-

tween agents i and j in d̃. Agents prefer to be close to other agents in the network in order to

easily access their information, but also wish to maintain as few links as possible, since links

are costly to direct. Strong externalities arise in this model: edge ij may incidentally reduce

the shortest path length between agents k and l, but such benefits are not internalized by

agent i. Also, since information flows bidirectionally, both agents i and j benefit from edge

ij, while the cost is shouldered by i alone.

11



Example 1.2. (Structural Hole / Bridging) Kleinberg et al. (2008) introduce a model

of network formation inspired by Burt’s (1995) theory of “structural holes”. Burt (1995)

argued that individuals that connect disparate groups within a network gain “bridging”,

“middle-person” or inter-mediation benefits. Such benefits arise from lying on a (shortest)

path connecting two agents not directly connected themselves. Citing empirical evidence,

Kleinberg et al. (2008) emphasize the special benefits of lying on length two paths between

disconnected agents.13 If dkidij (1� dkj) = 1, then i serves as a “bridge” between k and j

(see Panel [a] of Figure 1.2). The summation
P

l
dkldlj (1� dkj) yields a count of the total

number of bridging agents between k and j. While agents benefit from serving as a bridge

between two agents, these benefits decline in the number of other agents also serving as

bridges for the same (directed) dyad. This yields a network payo↵ function of the form

gi (d) =
P

j

P
k 6=j

� (dkidij (1� dkj) ,
P

l
dkldlj (1� dkj)) with � (0, k) ⌘ 0 and � (1, k) >

� (1, k + 1) > 0 for k = 1, . . . , N � 2. See Goyal and Vega-Redondo (2007) for a related

model.14

Example 1.3. (Supported Links, Transitivity, Reciprocity) Jackson et al. (2012)

introduce a model where agents value supported links. Edge ij is supported by agent k if

dijdkidkj = 1 (see Panel [b] of Figure 1.2). This configuration allows agent k to monitor, or

referee, relationship ij, making it more valuable. This suggests a network benefits function

of gi (d) =
P

j
dij (

P
k
dkidkj). If, instead, agents value reciprocity we would set gi (d) =

P
j
dijdji; while if they value transitivity in links (see Panel [c] of Figure 1.2) we would set

gi (d) =
P

j
dij (

P
k
dikdkj).

Marginal utility

Let, in an abuse of notation, ⌫i (d) ⌘ ⌫i (di,d�i; ✓,Ui); the marginal utility of arc ij for agent

i equals

MUij (d) =

(
⌫i (d)� ⌫i (d� ij) if dij = 1

⌫i (d+ ij)� ⌫i (d) if dij = 0
(4)

Marginal utility measures the utility gain (loss) to agent i from adding (subtracting) link ij

holding the structure of all other links in the network constant (including any other links

agent i directs). The component of marginal utility associated with the network benefit

function gi (d) plays an important role in our analysis. Define the marginal network payo↵

13“[T]here appears to be much less measurable benefit to u if it is the internal node on a path between two
nodes at graph distance greater than two” (Kleinberg et al., 2008, p. 285).

14We could, inspired by Freeman (1977), also consider the model where
agents directly value their network betweenness centrality such that gi (d) =

1
(N�1)(N�2)

P
j,k2N\{i}

# of shortest paths from agents j to k which pass through i
# of shortest paths from agents j to k .
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associated with agent i directing a link to j as

sij (d) =

(
gi (d)� gi (d� ij) if dij = 1

gi (d+ ij)� gi (d) if dij = 0
(5)

Using (2) and definition (5) yields a marginal utility for arc ij of

MUij (d) = Ai +Bj +W
0
ij
�0 + �0sij (d)� Uij. (6)

As it features in the computation of the optimal test statistic introduced below, it is helpful

to derive the form of sij (d) for the example network benefit functions introduced earlier.

Example 1.1. (Connections) In the connections model, when i directs a link to j she

weakly reduces her shortest path length to all other agents in the network. In this model

sij (d) � 0 for all d 2 DN . While there is no closed form expression for sij (d) in the

connections model, it is straightforward to compute shortest path lengths between agents

numerically (many network manipulation software libraries include routines to do this). If

removing (adding) arc ij increases (decreases) i’s distance to many other agents in the net-

work, then sij (d) will be large.

Example 1.2. (Structural Hole / Bridging) For the bridging network benefit function

sij (d) equals

sij (d) =
X

k 6=j

�

 
dki (1� dkj) , 1 +

X

l 6=i

dkldlj (1� dkj)

!
.

The marginal utility of edge ij is therefore increasing in the number of agents k which direct

edges to i, but not to j. It is decreasing in the number of agents l and k in which edges kl

and lj are present (but edge kj is not).

Example 1.3. (Supported Links, Transitivity, Reciprocity) In the support model

sij (d) =
P

k
dkidkj, which is simply a count of how many agents would support edge ij if it

were formed. When agents have a taste for transitivity we have instead

sij (d) =
X

k

dikdkj +
X

k 6=j

dikdjk

which is a count of how many transitive triads (involving agent i) would be created if edge ij

is added. Finally if agents have a taste for reciprocity we have sij (d) = dji; indicating that

the marginal utility of edge ij varies with the presence or absence of the reciprocal edge ji.
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1.3 Equilibrium networks

We assume that the observed network D coincides with the equilibrium outcome of an N -

player complete information game. Each agent (i) observes {(Ai, Bi, X
0
i
)}N

i=1 and {Uij}i 6=j

and then (ii) decides which, out of the N � 1 other agents, to send links to. Agents may play

mixed strategies.

A mixed strategy profile �
⇤ is a NE when ✓ = ✓0 and U = u, if for all i = 1, . . . , N ,

⌫i

�
�
⇤
i
, �

⇤
�i
; ✓0,ui

�
� ⌫i

�
di, �

⇤
�i
; ✓0,ui

�
(7)

for all possible pure strategy selections di. We assume that the observed network D is either

a pure strategy NE or in the support of a mixed strategy NE.15

Assumption 1.1. (Data Generating Process)

1. (Non-Stochastic X) Let V = {1, . . . , N} be the N agents in the network in hand,

each with a fixed (i.e., non-stochastic) group membership of Xi.

2. (Logistic Preference Shocks) Let U = [Uij]i 6=j
be an N(N � 1) vector of i.i.d.

logistic link preference shocks observed by all agents.

3. (Nash Equilibrium) Let ✓0 2 ⇥ be the parameter indexing the payo↵ function (2).

The observed network D is either a pure strategy NE or contained in the support of a

mixed strategy NE of the strategic form game
�
V ,DN , {⌫i (·, ·; ✓0,Ui)}i2V

�
.

Treating X as non-stochastic simplifies both notation (allowing us to suppress, for exam-

ple, the dependence of payo↵s on X) and analysis (see the proof to Theorem 1.1 below). It

is also without loss of generality. In our setting there is no asymptotic thought experiment

and the fixed N sampling distribution we consider conditions on X throughout. Randomness

across hypothetical replications of the network formation game are to due soley to variation

in U and any randomness in NE selection (see below).

15Observe that agent i must consider 2N�1 di↵erent pure strategy deviations in order to verify that their
chosen strategy is optimal. This may be unrealistic when N is large. A weaker equilibrium requirement, akin
to the notion of pairwise stability introduced by Jackson and Wolinsky (1996) for undirected networks, is to
require agents to only consider the e↵ects of adding or deleting a single link at time on their utility.

Under this weaker stability notion, which we call single deviation stable (SDS), we only require that the
marginal utility of any link present in the network is non-negative, while that of any link not present is
negative. This implies that the observed network D satisfies the system of N (N � 1) non-linear equations

Dij = 1
�
Ai +Bj +W

0
ij�0 + �0sij (D) � Uij

�

for i, j = 1, . . . , N and j 6= i.While we maintain the NE assumption in what follows, it turns out that our test
is also valid if, instead, the observed network is only SDS. Although single deviation stability is a natural
directed analog of pairwise stability, we are not aware of this equilibrium concept being considered before.
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1.4 Likelihood

In the presence of multiple NE, Assumption 1.1 imposes no restrictions on which one is actu-

ally realized in the observed network. Our strategic network formation model is incomplete.

Although we remain agnostic about equilibrium selection, it is nevertheless useful to develop

a notation for, and establish some properties of, the unknown equilibrium selection rule. This

allows us to write down a (well-defined) likelihood for the network, albeit abstractly.

Let N (d,u; ✓) be a function which assigns, for U = u, a probability weight to network

d:

N (d,u; ✓) : DN ⇥ Rn
! [0, 1] (8)

In order for N (d, ·; ✓) to be a valid NE selection function it must satisfy the conditions of

Definition 1.1.

Definition 1.1. (Equilibrium Selection Function) For U = u the realized vector of

logistic link preference shocks and ✓0 the payo↵ function parameter, let d⇤ (u; ✓0) be a pure

strategy NE or a network contained in the support of a mixed strategy NE and D⇤
N
(u; ✓0) be

the set of all such networks. Function (8) is such that (i)N (d,u; ✓0) � 0 for all d 2 D⇤
N
(u; ✓0)

(ii)
P

d2D⇤
N (u;✓0)

N (d,u; ✓0) = 1 and (iii) N (d,u; ✓0) = 0 for all d 2 DN\D⇤
N
(u; ✓0).

If N (d, ·; ✓) satisfies the conditions of Definition 1.1, then the likelihood of observing

network D = d is

P (d; ✓,N ) =

Z

u2Rn

N (d,u; ✓)fu(u)du, (9)

where fu(u) =
Q

i 6=j
fU(uij) with fU(u) = e

u
/[1 + e

u]2. Of course, for the likelihood (9) to be

well-defined we require that N (d, ·; ✓) is measurable.

Theorem 1.1. (Likelihood) For any network d 2 DN there exists a measurable func-

tion N (d, ·; ✓) : Rn
! [0, 1], which assigns to u 2 Rn a NE weight on the pure strategy

combination corresponding to d.

The proof of Theorem 1.1 can be found in Appendix A.1. It follows directly from ideas

in Beresteanu et al. (2011).

2 Testing for strategic interaction

In this section we introduce a model adequacy test for the dyadic logit null (the baseline

model). We then show how to optimize the power of this test in certain directions of the

alternative model space.
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We begin by describing how to assess the adequacy of the baseline model as a description

of the network in hand. Utilizing a conditioning argument we construct an exact test of the

null of “correct specification”. An alternative model is not explicitly formulated in this case,

although researcher intuitions about plausible directions of mis-specification typically guides

the choice of test statistic. As shown by Lehmann and Romano (2005), it is impossible to

construct a test with power (greater than size) in all possible directions of mis-specification.

Next we consider applications where the analyst carefully specifies the alternative model

(through an explicit choice of the network benefit function, gi (d)). Here the researcher be-

lieves the true network formation model lies in either the null or the (specified) alternative

model space; the purpose of testing is to determine which situation prevails. In this sec-

ond application we seek to construct a test which rejects with high probability when the

alternative is true, while continuing to control size under the null.

The mechanics of testing in both cases are the same, the di↵erence lies solely in the

choice of test statistic. This allows us to build up our results in a cumulative fashion. In

sub-section 2.1 we show how the exponential family structure of the model under the null

of no strategic interaction allows us to construct similar tests. Specifically we control size

exactly by conditioning on the minimally su�cient statistic for the null model parameter,

�. With these basics established we show in sub-section 2.2 how to optimize power in the

direction of a particular alternative. This step is non-trivial since under the alternative the

network formation game may exhibit multiple equilibria.

Throughout, and crucially, we wish to remain agnostic about the distribution of any degree

heterogeneity across agents as well as the form of any homophily and/or heterophily. Let �

denote a subset of the K2 +2N dimensional Euclidean space in which �0 = (�0,A0,B0) is, a

priori, known to lie. For technical reasons we assume that � contains a K
2+2N dimensional

rectangle. The null model parameter space is

⇥0 = {(�, �0) : � = 0, � 2 �} . (10)

Our null hypothesis is the composite one:

H0 : ✓ 2 ⇥0 (11)

since � may range freely over � ⇢ RK
2+2N under the null.
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Under the null the likelihood is P0(d; �)
def

⌘ P (d; (0, �0)0,N0) with

N0(d,u; ✓) =
Y

i

Y

j

1
�
Ai +Bj +W

0
ij
� � uij

�dij

⇥ 1
�
Ai +Bj +W

0
ij
� < uij

�1�dij
.

Under the null the unique “equilibrium” network is the one where all links with positive

marginal utility are present and those with negative marginal utility are not. Uniqueness

follows from the fact that agents’ best responses are constant in the strategy profiles of their

peers when � = 0. Consequently the marginal utility of edge ij is invariant to the presence

or absence of links elsewhere in the network.

Evaluating the integral (9) under the null yields

P0(d; �) =
NY

i=1

Y

j 6=i

"
exp

�
W

0
ij
�+R

0
i
A+R

0
j
B
�

1 + exp
�
W

0
ij
�+R

0
i
A+R

0
j
B
�
#dij

⇥

"
1

1 + exp
�
W

0
ij
�+R

0
i
A+R

0
j
B
�
#1�dij

, (12)

where Ri is the N ⇥ 1 vector with a 1 in its ith element and zeros elsewhere.16

2.1 Testing without explicit specification of the alternative (i.e.,

baseline model adequacy analysis)

Under the null our likelihood, P0(d; �), is a member of the exponential family. To see this it

is helpful to establish some additional notation. The out- and in-degree sequences equal:

S =

 
Sout

Sin

!
=

 
D1+, . . . , DN+

D+1, . . . , D+N

!
. (13)

Here D+i =
P

j
Dji and Di+ =

P
j
Dij equal the in- and out-degree of agents i = 1, . . . , N .

The K ⇥K cross-link matrix equals

M =
X

i

X

j

DijXiX
0
j
. (14)

This matrix summarizes the inter-group link structure in the network (homophily). The klth

16Variants of this likelihood are analyzed by Chatterjee et al. (2011), Charbonneau (2017), Graham (2017),
Jochmans (2018), Dzemski (2018) and Yan et al. (2018). See also Fernández-Val and Weidner (2016).
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element of M records the number of links sent by type k agents to type l agents.

Let S,M be a degree sequence and cross-link matrix. We say S,M is graphical if there

exists at least one arc setA such that G (V ,A) is a simple directed graph with degree sequence

S and cross link matrix M. We call any such network a realization of S,M. The set of all

possible realizations of S,M is denoted by GS,M. DS,M denotes the associated set of possible

adjacency matrices:

DS,M
def

⌘ {d 2 DN : (d1+, . . . , dN+) = Sout, (15)

(d+1, . . . , d+N) = Sin,

X

i

X

j

dijXiX
0
j
= M

)
.

Let T =
�
vec (M0)0 ,Sout,Sin

�0
. Note that associated with any graphical realization of T is a

corresponding set of adjacency matrices DS,M.

With this notation established it is easy to verify that the family of network formation

models under the null of no strategic interaction constitutes an exponential family.

Lemma 2.1. (i) P0,� = {P0(d; �) : � 2 �} is an exponential family with t a boundedly

complete su�cient statistic for �;17 (ii) its probability mass function (12) can be rewritten

as:

P0(d; �) = c(�) exp (t0�) , � 2 �, d 2 DN , (16)

with c (�)
def

⌘

hP
d2DN

exp
⇣hP

N

i=1

P
j 6=i

dij

�
W

0
ij
�+R

0
i
A+R

0
j
B
 i⌘i�1

.

Proof. See Appendix A.2.

The su�cient statistics for the K2 +N +N elements of the nuisance parameter �, are (i)

the cross link matrix, (ii) the out-degree sequence and (iii) the in-degree sequence.

Under H0 the conditional likelihood of the event D = d is

P0 (d|T = t) =
P0 (d; �)P

v2Ds,m
P0 (v; �)

=
1

|Ds,m|
(17)

if d 2 Ds,m and zero otherwise. Under the null of no strategic interaction all networks with

the same in- and out-degree sequences and cross link structure are equally likely. Importantly

this conditional likelihood is invariant to the actual value of the nuisance parameter �.

By conditioning on T, which is su�cient for �, we isolate the information in the data that

is relevant for assessing model adequacy (Barndor↵-Nielsen and Cox, 1994). This follows

17A su�cient statistic is (boundedly) complete if, for all (bounded) functions k (t), E0 [k (T)] = 0 for all
P0(d; �) 2 P0,� implies that k (T) = 0 almost everywhere. See Section 3.6 of Ferguson (1967).

18



because conditional on T, the null model completely specifies the distribution of D. Con-

sequently, the distribution of any statistic of the adjacency matrix, say R (D), is also fully

specified. Specifically the null distribution of R (D) is the one induced by a discrete uniform

distribution on DS,M:

Pr (R (D)  r|T; ✓ 2 ⇥0) =
1

|DS,M|

X

d2DS,M

1 (R (d)  r) . (18)

To test model goodness-of-fit/adequacy, we simply check whether the value of R (D) in the

network in hand is at an extreme quantile of this distribution. If it is, we take this as evidence

against the baseline (null) model.

Similarity and conditioning

A test with critical function � (D) will have size ↵ if its null rejection probability (NRP) is

less than or equal to ↵ for all values of the nuisance parameter:

sup
✓2⇥0

E✓ [� (D)] = sup
�=�0,�24

E✓ [� (D)] = ↵. (19)

Since the nuisance parameter � is very high dimensional, size control is a priori non-trivial.

For some intuition as to why consider, as an example, the case where sij(d) =
P

k
dkidkj,

such that agents’ have a taste for supported links when �0 > 0. A natural test statistic in

this case would be some function of D that is increasing in the number of supported links in

the network.18 The researcher would then reject the null of �0 = 0 when this statistic is large

enough. Unfortunately, the expected number of supported links varies dramatically under

the null depending on the value of �. Certain configurations of A, B and/or � may result

in a network with substantial link clustering (and hence support) even when agents’ have no

taste for support per se. If we choose a fixed critical value for rejection then, depending on

the values of A, B and/or �, size may be very poor.

To avoid any size distortion induced by variation in � over � ⇢ RK
2+2N we exploit the

exponential family structure of our model (under the null). Let T = {t : s,m is graphical}

be the set of possible su�cient statistics T. Instead of choosing a fixed critical value, which

may result in under- or over-rejection, depending on the value of �, we proceed conditionally

on T 2 T, varying our critical value with T. In this way we ensure good size control. By

conditioning on T we can also remain agnostic about its marginal distribution (and hence

the value of � for which T is su�cient).

18Jackson et al. (2012) suggest the fraction of links in the network which are supported.
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Formally, for each t 2 T we form a test with the property that, for all ✓ 2 ⇥0,

E✓ [� (D)|T = t] = ↵. (20)

Such an approach ensures similarity of our test since, by iterated expectations,

E✓ [� (D)] = E✓ [E✓ [� (D)|T]] = ↵ (21)

for any ✓ 2 ⇥0 (Ferguson, 1967). By proceeding conditionally we ensure that the NRP is

una↵ected by the value of �.

For any t 2 T we can construct an exact test, as is required by (20), because our model

completely specifies the distribution of networks conditional on T = t under the null. Condi-

tion (21) follows immediately. Using some well-known results from the theory of exponential

families, we can make the stronger claim that similarity is only possible by conditioning.

Lemma 2.2. (Similarity) Any similar test of H0 : ✓ 2 ⇥0 satisfies (20) for all t 2 T.

Proof. By Lemma 2.1 above, T is a boundedly complete su�cient statistic for ✓ under the

null. The claim then follows from Ferguson (1967, Definition 4 and Theorem 2, Section

5.4).

Implementation

For concreteness let R(D) be the network reciprocity index (Newman, 2010):

R(D) =
2P̂11

2P̂11 + P̂01

, (22)

where

P̂01 =
2

N (N � 1)

N�1X

i=1

NX

j=i+1

[Dij (1�Dji) + (1�Dij)Dji] (23)

equals the fraction of dyads which take an unreciprocated or “asymmetric” configuration and

P̂11 =
2

N (N � 1)

N�1X

i=1

NX

j=i+1

DijDji (24)

the fraction which take a reciprocated or “mutual” configuration.
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A conditional test based upon R(D) will have a critical function of

� (d) =

8
><

>:

1 R (d) > c↵ (t)

g↵ (t) R (d) = c↵ (t)

0 R (d) < c↵ (t)

(25)

where the values of c↵ (t) and g↵ (t) 2 [0, 1] are chosen to satisfy the requirement that

E✓ [� (D)|T = t] = ↵. Specifically, given the su�cient statistic T we first compute:

c↵ (T) = min

8
<

:c 2 R :
1

|DS,M|

X

d2DS,M

1 (R (d) > c)  ↵

9
=

; . (26)

Second we set g↵ (T) according to

g↵ (T) =
↵�

1

|DS,M|

P
d2DS,M

1 (R (d) > c↵ (T))

1

|DS,M|

P
d2DS,M

1 (R (d) = c↵ (T))
.

Observe that, formally, the test is randomized. Because the adjacency matrix is a discrete

random variable, with finite support, it will generally not be possible to find a c 2 R such that

|DS,M|
�1P

d2DS,M
1 (R (d) > c) exactly equals ↵. In such cases, the econometrician instead

chooses the highest c 2 R such that |DS,M|
�1P

d2DS,M
1 (R (d) > c) is strictly less than ↵.

She then probabilistically rejects when R (D) = c to ensure proper size. In typical uses cases,

the cardinality of the set DS,M will generally be intractably large, such that a researcher can

just use a non-randomized test in practice. That is, she will be able to find a c 2 R such

that |DS,M|
�1P

d2DS,M
1 (R (d) > c) ⇡ ↵ to such a high level of accuracy that there will be

little gained from using a randomized decision rule. In such settings, it would be di�cult

to accurately compute g↵ (t) in any case since the event R (d) = c↵ (t) will occur with low

probability. This will become clearer when we discuss simulation of the null distribution

below.

Under the null all adjacency matrices with the S = s and M = m are equally probable.

By enumerating all adjacency matrices in Ds,m we could exactly compute the null distribution

of R (D) and hence the critical values c↵ (t) and g↵ (t) defined above. In general such a brute

force approach will be infeasible.19 Therefore a method of approximating the exact null

distribution is required. The simulation algorithm introduced in Section 3 below provides

19In fact very little is known about the set Ds,m; for example we are aware of no method for checking whether
a given s,m pair is graphic. From related settings we believe that the cardinality of Ds,m will typically be
intractably huge even for modestly-sized networks. See Blitzstein and Diaconis (2011) for discussion of this
point and examples from a related setting.
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such a method.

The intuition behind this test is straightforward. If the network in hand has an “unusu-

ally” large value of R(D) relative to the set of all networks with same in- and out-degree

sequences and cross-link matrices, then we reject the null that the baseline model is correctly

specified. A rejection is not interpreted as evidence in favor of a particular alternative model.

Relatedly, a feature of goodness-of-fit tests, including this one, is that we have may have low,

or even, power equal to size in certain directions (Lehmann and Romano, 2005).

Observe that the test is exact, involving no appeal to approximations associated with an

asymptotic thought experiment.

2.2 Optimal testing with an explicit alternative

In this subsection we discuss how to optimize our test when the alternative model space

is explicitly specified. That is, when the researcher explicitly specifies the network benefit

function in (2) and proceeds under the premise that the true network generating process

lies either in the null or the (explicitly specified) alternative model space. In such settings a

rejection provides evidence that �0 > 0 (in the context of a specific network benefit function).

Naturally the researcher would like to maximize her power to reject, while continuing to

maintain similarity. To accomplish this requires choosing the right test statistic.

Because an equilibrium selection mechanism is not explicitly specified under the alterna-

tive, likelihood ratio (LR) testing is not feasible (cf., Chen et al., 2018). As an alternative

to a LR test, we instead choose, for each t 2 T, the critical function, � (D) to maximize the

derivative of the (conditional) power function � (�, t) = E [� (D)|T = t] evaluated at � = 0

subject to the (conditional) size constraint E✓ [� (D)|T = t] = ↵. Such a � (D) is locally best

(Ferguson, 1967, Lemma 1, Section 5.5). Remarkably we show that the locally best test does

not depend upon the form of the equilibrium selection mechanism N (d,u; ✓).

Di↵erentiating the power function we get20

@� (�, t)

@�

����
�=0

= E [� (D) S� (D|T; ✓)|T = t] (27)

20Di↵erentiability of the likelihood function is formally established by Theorem 2.3 below.
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with S� (d| t; ✓) denoting the conditional score function

S� (d| t; ✓) =
1

P0 (d; �)

@P (d; ✓)

@�

����
�=0

�

X

v2Ds,m

@P (v; ✓)

@�

����
�=0

=
1

P0 (d; �)

@P (d; ✓)

@�

����
�=0

+ k (t)

and k (t) only depending on the data through T = t (Here, and in the balance of this section,

it is understood that � is evaluated at is population value �0). By the Neyman-Pearson lemma,

the test with the critical function given by equation (25) above, where the test statistic, R (d),

is set equal to the log-likelihood gradient, 1
P0(d;�)

@P (d;✓)
@�

���
�=0

, will be locally best within the

class of similar tests.

The idea behind the locally best test is as follows. If the likelihood increases sharply as

we move away from the null in the direction of the alternative of interest, then we take this

as evidence against the null. Intuitively if the likelihood gradient in the neighborhood of the

null is large, then the likelihood ratio will also be large for simple alternatives close to the

null (i.e., when � 2 (0, ✏]).

Constructing the locally best critical function requires calculating 1
P0(d;�)

@P (d;✓)
@�

���
�=0

. This

is not straightforward since it depends on properties of the likelihood under the alternative

(and consequently the equilibrium selection function). Nevertheless, we are able to derive

the form of this derivative.

Theorem 2.3. (Locally Best Test) (i) P (d; ✓,N ) is twice di↵erentiable with respect to

� at � = 0. Its first derivative at � = 0 is

@P (d; ✓,N )

@�

����
�=0

= P0 (d; �)

⇥

"
X

i 6=j

sij (d)

(
dij

fU (µij)R
vij

�1 fU (u) du
� (1� dij)

fU (µij)R1
vij

fU (u) du

)#
, (28)

where µij = Ai + Bj + X
0
j
⇤0Xi equals the systematic, non-strategic, component of util-

ity generated by arc ij and that fU is the logistic density; (ii) the test statistic R (d) =
1

P0(d;�)
@P (d;✓)

@�

���
�=0

yields the locally best test in the direction of the specified alternative within

the class of similar tests.

The proof of Theorem 2.3, along with some additional commentary, can be found in

Section A.3 of the Supplemental Web Appendix. A key implication of Theorem 2.3 is that

the form of the locally best test statistics does not depend upon N , the equilibrium selection
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mechanism. This is essential, since optimal testing would not be feasible otherwise (at least

without additional assumptions). One intuition for this finding is that equilibrium is unique

with high probability when � is close to zero. This means we can e↵ectively ignore draws of

U which lead to multiple equilibria when di↵erentiating the likelihood.

Indeed, when � is close to zero most players will have a strictly dominant strategy (that is

the optimal set of links for them to send will be invariant to the play of their peers). Of course

we need more information to recover the gradient with respect to �, since this parameter

measures the responsiveness of agents to their peers’ actions. It turns out that a key scenario

used in the derivative calculation involves considering draws of U where all players except

one have strictly dominant strategies. The one player without a strictly dominant strategy

provides the needed gradient information. This player’s actions are sensitive to the play of

their peers’ – this delivers non-trivial gradient information – but NE is unique in this scenario

such that the details of equilibrium selection do not matter. In the proof we show that the

e↵ect of realizations of U associated with multiple NE is negligible when � is small enough.

Locally best vs. heuristic test statistics

With a little manipulation we can simplify (28) to:

1

P0 (d; �)

@P (d; ✓)

@�

����
�=0

=
X

i 6=j

[dij � FU (µij)] sij (d) (29)

where FU (u) = e
u
/ [1 + e

u] is the logistic CDF. This form of the statistic provides insight

into how our test accumulates evidence against the null in practice. Consider the case where

sij (d) = dji, as would be true in agents’ have a taste for reciprocated links. Observe that

FU (µij) corresponds to the probability of the edge ij under the null. Therefore the optimal

test statistic is large if we observe that many ij links with low probability under the null are

reciprocated. It is not many reciprocated links that drives rejection per se, but the presence

of many “unexpected” reciprocated links.

Consider a network of boys and girls with agents exhibiting a strong taste for gender-

based homophily. The optimal test statistic in this case is the conditional sample covariance

of Dij and Dji given (Ai, Bi, Xi) and (Aj, Bj, Xj). The test based upon the reciprocity index

is – essentially – based upon the unconditional covariance. The e↵ect of conditioning is to,

for example, given more weight to heterophilous reciprocated links than to homophilous ones.

Similarly we give more weight to reciprocated links across low degree agents, than to those

across high degree agents.

We close by observing that the locally best property, like similarity, is a non-asymptotic
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one. In our “finite sample” setting we can say nothing about test consistency. We also note

that optimality is in the region of �0 = 0. Test power need not be monotonic in �0 as we

move far from zero. This is a feature of many other score tests.

Implementation

Two practical issues remain. The first, how to simulate the null distribution of the test

statistic, is covered in the next section. Second, although the locally best test statistic does

not depend on the details of equilibrium selection, it does depend on �0. Although the test

will remain admissible when �0 is replaced by some other, perhaps arbitrary, �, it will not be

locally best.

A practical solution to this problem is to replace �0 with its joint maximum likelihood

estimate (MLE) computed under the null. This particular MLE is elegantly studied by

Fernández-Val and Weidner (2016) (see also Yan et al. (2018)). We emphasize that the

feasible test based on the MLE is no longer locally best. When �0 is poorly estimated, as

may occur when D is sparse, the power of the feasible test could be appreciably lower than

that of the oracle.21 The feasible test remains admissible.

Nevertheless, in our Monte Carlo experiments, some of which are reported in the Sup-

plemental Web Appendix, we have found that replacing �0 with its MLE, results in a test

which is nearly as powerful as the infeasible oracle test based on �0, and far more powerful

that tests based on ad hoc statistics. This is true even in the “sparse” designs we consider.

Of course this finding is specific to the particular experiments we considered. It would be

interesting to study how to choose � 2 � rigorously. While replacing �0 with a “good guess”

seems sensible, what constitutes a “good guess” in this setting is a a topic we leave for future

research.

3 Simulation: drawing uniformly at random from Ds,m

Because a complete enumeration of Ds,m is not feasible unless N is very small, making our

test practical requires a method of constructing uniform random draws from this set. Such

draws can be used to simulate the null distribution of any test statistic of interest.

The problem of simulating networks with fixed degree sequences is well-studied; with

many domain specific applications (e.g., Sinclair, 1993). We add to this problem the addi-

tional requirement that the simulated network satisfies the cross-link matrix constraint.

Prior work on network simulation adopts one of two basic approaches. The first approach

begins with an empty graph and randomly adds links. Links need to be added such that the

21We thank a referee for raising this concern.
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end graph satisfies the degree sequence constraint. Blitzstein and Diaconis (2011) develop an

algorithm along these lines. They cleverly use checks for graphicality of a degree sequence,

available in the discrete math literature, to add links in a way which constrains the end graph

to be in the target set.22

The second approach, to which our new method belongs, uses Markov Chain Monte Carlo

(MCMC). Specifically an initial graph, satisfying the target constraints, is randomly rewired

many times to create a new graph from the target set. Key to this approach is ensuring that

each rewiring is compatible with the target constraints (e.g., maintains the network’s degree

sequence). The algorithm also needs to be constructed carefully to ensure that the end graph

is a uniform random draw from the target set. Sinclair (1993), Rao et al. (1996), McDonald

et al. (2007), Berger and Müller-Hannemann (2009) and Tao (2016) all developed MCMC

methods for simulating graphs (or digraphs) with given degree sequences.

We are aware of no method of generating adjacency matrix draws from Ds,m. The novelty

of this problem, relative to the work described above, is the presence of the additional cross

link matrix constraint, M. In the discrete math literature the cross link matrix constraint

corresponds to what is called a partition adjacency matrix (PAM) constraint. Czabarka

et al. (2021) conjecture that determining whether a given s,m pair is graphical, the PAM

realization problem, is NP-complete. If their conjecture is correct (and NP 6= P), using a

Blitzstein and Diaconis (2011) type algorithm to draw from Ds,m is not feasible.

This leaves MCMC methods. Erdős et al. (2017) showed that naively incorporating a

PAM constraint into existing MCMC algorithms destroys their correctness. In this section

we introduce a new MCMC algorithm that does generate uniform random draws from Ds,m.

This algorithm is of independent interest. Before describing the algorithm we introduce some

additional definitions and notation.
22See also Del Genio et al. (2010) and Kim et al. (2012). Graham and Pelican (2020) provide a textbook

discussion of the Blitzstein and Diaconis (2011) algorithm.
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3.1 Notation and definitions

We start by defining an alternating walk.

Definition 3.1. (Alternating Walk) An alternating walk H is sequence of (ordered)

dyads of the form

H := (i1, i2) , (i3, i2) , (i3, i4) , . . . , (il, il�1) (30)

or

H := (i2, i1) , (i2, i3) , (i4, i3) , . . . , (il�1, il) (31)

with ik 2 V (G), ik 6= ik+1, ik 6= ik�1and

(i) if (ik, ik�1) 2 A (G), then (ik, ik+1) /2 A (G)

(ii) if (ik, ik�1) /2 A (G), then (ik, ik+1) 2 A (G)

(ii) if (ik�1, ik) 2 A (G), then (ik+1, ik) /2 A (G)

(iv) if (ik�1, ik) 62 A (G), then (ik+1, ik) 2 A (G)

for all k = 2, . . . , l � 1.

For brevity we will often refer to a walk simply by its node sequence, writing H :=

i1i2, . . . , il. To unpack Definition 3.1 it is easiest to consider an example. In Figure 3, Panel

B, three altering walks are shown (the links not present are depicted as dotted arrows).

Observe that for H := i1i2, . . . , il, the adjacency matrix entries Di1i2 , Di3i2 , . . . , Dilil�1

alternate between ones and zeros (or zeros and ones). This observation suggests a method of

constructing an alternating walk via a sequence of “hops” across the adjacency matrix: pick

row i1 of the adjacency matrix and move horizontally to column i2, where i2 corresponds to

one of the agents to which i1 directs a link, next move vertically to row i3, where i3 is an agent

which does not direct a link to i2, and so on.23 We call the horizontal moves active steps and

vertical moves passive steps. Figure 2 provides an example construction. The di↵erent cases

in Definition 3.1 correspond to walks beginning/ending with passive/active steps.

The length of an alternating walk equals the number of ordered dyads used to define it.

An important type of alternating walk, which following Tao (2016), we call an alternating

cycle, is central to our algorithm.

Definition 3.2. (Alternating Cycle) The alternating walk C is an alternating cycle if

i1 = il and C has even length.

The length of an alternating cycle is at least four. Let Di1i2 , Di3i1 , . . . , Dilil�1
be the

sequence of adjacency matrix entries associated with alternating cycle C in D. These entries

necessarily form a sequence of zeros and ones (or ones and zeros).

23This description is essentially due to (Tao, 2016, p. 124).
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Figure 2: Constructing an alternating walk

Source: Authors’ calculations.
Notes: Panel A depicts an alternating walk j, g, a, b, c, d, e, c, a constructed using the adjacency
matrix. The same altering walk is colored blue in Figure 2. Agent labels are given in the first
column and row of the table. To construct such a walk randomly we begin by choosing an
agent at random. Here agent j is chosen, with an ex ante probability of 1

10 since there are ten
agents in the network. Next we take an active step where one of agent j’s outlinks is chosen
at random. Here we choose the outlink to agent g, an event with an ex ante probability of
1
2 since agent j has just two outlinks. Following the active step comes a passive step. In a
passive step we move vertically to the row of an agent which does not direct a link to the
current agent. Here we choose a from the set {a, b, c, d, e, f, i} uniformly at random (i.e.,
with an ex ante probability of 1

7). We continue with active and passive steps until we choose
to stop or can proceed no further. Panel B reports the indegree and outdegree of each agent
in the network. Observe that in active steps the probability of any feasible choice equals the
inverse of the outdegree of the current agent. In passive steps the probability of any feasible
choice equals the inverse of the number of nodes minus the indegree of the node chosen in the
prior step minus 1 (since ik 6= ik+1). We can also construct alternating walks by the above
procedure, but instead starting with a passive step. The shaded cells in the table shows
which edges (ones) and non-edges (zeros) are in the walk.
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Consider constructing an alternative digraph, say D
0, by replacing all the “ones” in the

alternating cycle C with “zeros” and all “zeros” with “ones”. Rewiring D in this way is

degree preserving: D
0 has the same in- and out-degree sequence as D. We refer to such

operations as switching the cycle (since we switch the zeros and ones).

We use random alternating walks on the network in order to find alternating cycles. We

then use these alternating cycles to rewire the network. This motivates the definition of what

we call a schlaufe. A schlaufe is either an alternating walk which contains an alternating cycle

(as the last part of the walk) or it is an alternating walk which cannot be continued. More

precisely

Definition 3.3. (Schlaufe) An alternating walk H := i1i2 . . . il is a schlaufe if either

(i) There is a node ik 2 {i1i2 . . . il} with k 6= l such that ik = il and (k � l) mod 2 = 0.

Furthermore for any two nodes ij and ih in {i1i2 . . . il�1} with ij = ih and j 6= h it holds that

(j � h) mod 2 = 1.

(ii) At node il there is no other node il+1 such that the alternating walk could be extended

with the unmarked link (il, il+1).

In German schlaufe corresponds to “loop”, “bow” or “ribbon” (its plural is schlaufen); the

latter translation is evocative of our meaning here. In the first case the schlaufe will coincide

with an alternating walk which includes exactly one alternating cycle.24 Visually schlaufen

of the first type, with the nodes appropriately placed, will look like loops and ribbons. In

the second case the schlaufe does not include an alternating cycle.

Associated with a schlaufe, R, is a K ⇥ K violation matrix which records the number

of extra links from group k to group l generated by switching the alternating cycle in R

(if there is one). Consider an alternating rectangle consisting of two boys and two girls. If

initially one boy directs a link to the other and one girl directs a link to the other, then after

switching the cycle the violation matrix will equal:

Ego \Alter Boy Girl
Boy -1 1
Girl 1 -1

After switching the cycle there are too few same gender links and too many mixed gender

ones.
24The requirement that ik = il and (k � l) mod 2 = 0 ensures that C = ikik+1 . . . il is an alternating cycle

(imposing even length). The “furthermore...” requirement ensures that if another node is visited multiple
times it does not form an alternative cycle (imposing non-even length). See Figure 3 for an example.
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We call a sequence of schlaufen R = (R1, . . . , Rk) feasible if (i) the cycles of the schlaufen

are link disjoint and (ii) the sum of their violation matrices is zero (and for i < k the sum of

their violation matrices is not zero).

Conventional MCMC adjacency matrix re-wiring algorithms work by switching short cy-

cles (e.g., alternating rectangles and compact alternating hexagons as in Rao et al. (1996)).

Switches of this type, while preserving the in- and out-degree sequence of the network will

typically generate networks with the wrong inter-group link structure (i.e., non-zero link vi-

olation matrices). Our approach to solving this problem involves switching many alternating

cycles simultaneously such that their individual link violation matrices sum to zero.

3.2 The MCMC algorithm

Let S = s and M = m be the degree sequence and cross link matrix of the network in hand.

In order to a draw, say D
0, from Ds,m we (i) start with a realization of (s,m), say D, (ii)

randomly construct (link disjoint) schlaufen, and (iii) switch any alternating cycles in them.

While switching cycles will preserve the degree sequence, it may – as discussed earlier – result

in a graph without the appropriate cross link matrix. In order to ensure that D
0 has the

appropriate cross link matrix, we construct schlaufen until either the sum of their violation

matrices equals zero or we stop randomly. If the sum of the schlaufen violation matrices is

zero we move to D
0 from D by switching the cycles, otherwise we set D0 = D. Proceeding

in this way ensures that D
0 is, in fact, a random draw from Ds,m. After su�ciently many

iterations of this process we show that a graph constructed in this way corresponds to uniform

random draw from Ds,m. A formal statement of the procedure is provided by Algorithm 1.

Algorithm 1 uses a subroutine to find schlaufen. This subroutine, described in Algorithm

2, finds and marks a schlaufe in the graph.

To illustrate our method in more detail consider the network depicted in Panel A of Figure

3. This network consists of two types of agents: gold (light) and blue (dark). The cross link

matrix for the graph is given in Panel D. In Panels B and C a sequence of three schlaufen

is shown. The first schlaufen is R1 = jgabcdeca. It is constructed through a sequence of

active and passive steps as described earlier (see also the notes to Figure 2 above). We begin

by choosing agent j randomly with a probability of 1
10 (since there are ten agents in the

network). We then take an active step, randomly choosing one of the two agents to which

j directs a link (i.e., either agent g or i). Here we choose agent g. Next we take a passive

step. Specifically we choose an agent at random from the set of agents that do not direct a

link to g (the agent chosen in the previous active step). The probability associated with our

choice in this passive step is 1
7 ; this corresponds to the reciprocal number of agents in the

network (i.e., 10) minus the indegree the current agent (i.e., 2) minus one (since self-loops
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Algorithm 1 Markov Draw Algorithm

Inputs: An adjacency matrix d 2 Ds,m; a mixing time ⌧

Procedure:

1. Set t = 0.

2. With probability 1� q go to step 3, with probability q go to step 4.

3. find and mark a schlaufe (see Algorithm 2):

(a) if the sum of the schlaufen violation matrices is zero, then

i. switch the cycles in the schlaufen (changing the adjacency matrix d),

ii. unmark all links,

iii. go to step 4.

(b) else

i. with probability 1
2 , go to step 3 or

ii. with probability 1
2 , unmark all links and go to step 4.

4. Set t = t+ 1

(a) if t = ⌧ then return d

(b) else go to step 2

Output: A uniform random draw d from Ds,m
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Algorithm 2 Schlaufen Detection Algorithm

Inputs: An adjacency matrix d 2 Ds,m (this network may have marked links in it)
Procedure:

1. Choose an agent/node, say i, at random.

2. Mark agent i as active and

(a) if feasible, randomly choose one of i0s (unmarked) outlinks, say to j, and go to
step 3;

(b) else (i.e., no unmarked outlinks available) go to step 6.

3. Mark edge ij, chosen in step 2 and

(a) if agent j is already marked passive, then go to step 6;

(b) else go to step 4.

4. Mark agent j, chosen in step 3, as passive and

(a) if feasible, randomly choose an agent, say k, from among those who do not direct
links to j, and go to step 5,

(b) else go to step 6.

5. Mark edge kj, with k the agent chosen in step 4, as passive and

(a) if agent k is already marked active, then go to step 6;

(b) else go to step 2.

6. return the (marked) adjacency matrix, the constructed schlaufe and its violation matrix.

Output: A schlaufe, its violation matrix and a marked adjacency matrix.
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are not allowed). We continue taking active and passive steps in this way until we visit a for

the second time. At this point we stop since our schlaufe now includes the alternating cycle

C1 = abcdeca. Note that c is also visited twice, but also that cdec is not an alternating cycle

since it is not of even length (see Definition 3.2).

As seen in the example we can calculate the probability of a schlaufe R as we go through

the algorithm (see Panel E). In Step 1 of Algorithm 2 an agent is chosen with probability
1
N
. Next let ra

D
(i) be the cardinality of the set of feasible out links in an active step. This

set consists of all the out links of node i, which are not already marked in D. Similarly, let

r
p

D
(i) be the cardinality of the set of feasible outlinks in an passive step. That set consists of

all the links ij for which ji is not in D and which are not already marked. The probability

of R = (i1, .., il) can now be written as

pD(R) =
1

N

l�1Y

k=1

✓
1

r
a

D(ik)
[k mod 2] +

1

r
p

D(ik)
[(k � 1) mod 2]

◆
(32)

In step 2 of Algorithm 1 we attempt to find a sequence of schlaufen with probability

1 � q and do not change the adjacency matrix otherwise. In step 3, a schlaufen sequence

R = (R1, .., Rh) is constructed/found. After each detected schlaufe in this sequence, say

Rk, any cycle in it is marked. Let Dk be the graph with the cycles of R1, .., Rk�1 marked.

After each schlaufe added the construction is stopped with probability 1
2 . The probability

of finding a cycle Rk is pDk
(Rk) as given in equation (32) above. The total probability of a

feasible schlaufen sequence R is therefore

pD(R) = (1� q)
1

2(h�1)

hY

i=1

pDk
(Rk). (33)

3.3 Correctness

To show that our algorithm does indeed generate a uniform random draw from the set Ds,m

we use standard Markov chain theory (e.g., Chapters 7 and 10 of Mitzenmacher and Upfal

(2005)).

The random rewiring of the network implemented by Algorithm 1 can be described as

a Markov chain. To show that, for ⌧ large enough, it returns a uniform random draw from

Ds,m we prove that the stationary distribution of the Markov chain generated by Algorithm

1 is uniform on Ds,m. To show this it is helpful to develop a graphical representation of the

Markov chain.

We denote the state graph of the Markov chain by � = (V�,A�). Its underlying vertex

set V� is the set of all elements in Ds,m: each node in our state graph is a network with degree
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Figure 3: A feasible schlaufen sequence

Source: Authors’ calculations.
Notes: See the discussion in the main text. The figure depicts three link disjoint schlaufen
with violation matrices which sum to zero. Panel E reports the (ex ante) probability that a
given node was selected as the schlaufe was constructed. See equation (32).
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sequence S = s and cross link matrix M = m. For network D in Ds,m, we denote by vD the

corresponding vertex in V�. The arc set A� is defined as follows.

1. For all vertices we add the self loop (vD, vD) with (probability) weight q (see Step 2 of

Algorithm 1).

2. Let D and D
0 be two di↵erent networks in Ds,m. Let D�D

0 equal the union of the set

of edges in D, but not in D
0 and the set of edges in D

0, but not in D. For each feasible

schlaufen-sequence R, with cycle edge set equal to D�D
0 we add the edge (vD, vD0)

and assign to it probability weight pD(R).

3. Finally we add a directed loop (vD, vD) if the probability of all arrows leaving vD,

introduced in points 1 and 2 immediately above, do not sum to 1. The probability of

this loop is 1 minus the sum of the probability of all other outward arrows.

The probability of any arc a 2 A� is denoted by p(a). Note, by definition, the state graph

can have parallel arcs and loops.

With these definitions in place we can prove correctness of the algorithm. First we

show that the probability of the algorithm moving from graph D to D
0 coincides with the

probability of moving in the reverse direction.

Lemma 3.1. For any two vertexes vD, vD0 the transition probability attached to (vD, vD0)

equals that attached to (vD0 , vD).

Proof. See appendix A.4.

Next we show the state graph is strongly connected. This means our Algorithm moves

from any D 2 Ds,m to any other D0
2 Ds,m with positive probability.

Lemma 3.2. The state graph � is strongly connected.

Proof. See appendix A.4.

With these two lemmata it is easy to show that the stationary distribution is uniform on

Ds,m. This gives us the main result of the section.

Theorem 3.3. Algorithm 1 is a random walk on the state graph � which samples uniformly

a network from Ds,m for ⌧ ! 1.

Proof. See appendix A.4.
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Figure 4: Nyakatoke Village Risk-Sharing Network

Source: De Weerdt (2004) and authors’ calculations.
Notes: Each household is colored according to their land and livestock wealth (measured in Tanzanian Shillings) and religion.
The arrow head on the edges points to the “alter” household with the link being sent by the tail “ego” household.
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4 Empirical illustration: risk-sharing links when agents

value bridging capital

De Weerdt (2004) studied the formation of risk-sharing links across 119 households in the

rural village of Nyakatoke (located in Tanzania). He asked all adult individuals in the village

who they could rely upon for help and, from their responses, constructed a network of directed

links across households.25. The resulting set of links is shown in Figure 4.

Modeling the configuration of links shown in Figure 4 as a NE of a complete information

network formation games is reasonable in our setting. For example, the observed network

may correspond to the long-run rest point associated with an un-modeled dynamic network

formation process. The small village rural setting of Nyakatoke is consistent with agents

having high levels of information about their own and others’ payo↵s. Finally we interpret

the De Weerdt (2004) prompt at face value: households report who they would – in fact –

turn to in a time of need.

Here we assess whether households value “bridging capital”, as suggested by Burt (1995)

and formalized in game-theoretic terms by Kleinberg et al. (2008) and others. If k directs

a link to i but not to j, then i, by directing a link to j, may position herself to serve as a

“bridge” or “broker” between k and j. See Figure 1.2 above.

In the formal model of Kleinberg et al. (2008) agents gain utility from positioning them-

selves on length two paths connecting agents not directly connected themselves; however such

utility gains are decreasing in the number of “rival” length two paths (i.e., those with other

agents in the center). This suggest, for example, a network benefit function of

gi (d) =
X

j 6=i,k,j

X

k 6=i,j

DkiDij (1�Dkj)

max
⇣
1,
P

l 6=j,k
DklDlj (1�Dkj)

⌘ . (34)

In this formulation any “bridging” capital is shared equally across all agents l on length two

paths from j to k (with arc jk absent). For example, if there are two bridging agents situated

between j and k, they each get half the benefit and so on. The marginal network benefit of

edge ij is thus

sij (d) =
X

k 6=i,j

DkiDij (1�Dkj)

max
⇣
1,
P

l 6=j,k
DklDlj (1�Dkj)

⌘ , (35)

25The prompt used by De Weerdt (2004) is suggestive of both mutuality and directionality, leading to
some ambiguity in whether to interpret the collected edges as undirected or directed. Comola and Fafchamps
(2014) present evidence suggesting that the links given by households are directed. Specifically that they
indicate to which other households they would turn to in the event of need. It is this interpretation that we
give the links here.
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from which the form of the locally best test follows.

From De Weerdt (2004) we also know that household land and livestock wealth, as well as

religion (Catholic, Lutheran or Muslim), are important drivers of link formation in Nyakatoke.

We divide households into three wealth bins, which in conjunction with religion, partitions

households into nine groups; Xi consists of the nine resulting group membership dummies

with the 81 elements of ⇤ parameterizing any homophily/heterophily across these groups.

The remaining null model parameters are the 238 = 119⇥ 2 household-specific in- and out-

degree heterogeneity parameters. This gives dim(�) = 2 ⇥ 119 + 9 ⇥ 9 = 319 null model

“nuisance” parameters. It is hard to imagine a testing approach with good properties in this

setting which would not involve “conditioning away” the null model parameter.

One aim of our empirical illustration is to compare the performance of the locally best

test statistic, which follows naturally from the form of the Kleinberg et al. (2008) network

benefit function, to that of heuristically motivated ad hoc test statistic.

It is not entirely clear how to form a heuristic test with power to detect the more quali-

tative alternative “agents like to bridge disconnected groups”. Indeed, this lack of clarity is

one argument for using a locally best test. Such tests proceed in a principled way from an

explicit network benefit function.

After some experimentation we settled on the di↵erence between the 90th and 50th per-

centiles of the empirical distribution of betweenness-centrality across agents in the network

as a suitable ad hoc test statistic (other measures of dispersion give similar results).

The reasoning behind this choice is as follows. As before, let d̃ denote the undirected

network obtained from d. Next let �jk

i
(d̃) denote the number of paths between j and k in

d̃ which pass through i and �
jk(d̃) the total number of paths connecting j and k (whether

they pass through i or not).

Agent i’s betweenness centrality (Wasserman and Faust, 1994, p. 190) equals:

C
BC
i

⇣
d̃

⌘
=
X

j<k

�
jk

i
(d̃)

�jk(d̃)
. (36)

Equation (36) is maximal when i is situated on every path between every pair of connected

agents. When d̃ is connected, this maximal value equals the number of dyads excluding i or
�
N�1
2

�
= (N�1)(N�2)

2 .

The “90-50 gap” in the empirical distribution of CBC
i

⇣
d̃

⌘
measures right-tail inequality

in betweenness centrality. If agents value bridging capital, then it is plausible that the top 10

percent of agents in the network will acquire substantially more of such capital – as proxied

by betweenness centrality – than the typical (or median) agent.

The intuition behind this claim is that acquiring bridging capital is inherently rivalrous;
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the addition of links by other agents may reduce one’s own betweenness centrality. Competi-

tion to accumulate bridging capital should therefore lead to more dispersion in betweenness-

centrality across agents (than in a reference set of null model graphs). Winners of this

competition (the 90th percentile) will have more bridging capital than the typical agent (the

50th percentile) in the network.

We wish to emphasize that the “ad hoc” descriptor of this statistic is apt. The reasoning

outlined above is both meandering and speculative; we provide it simply as an example of

how one might select a test statistic heuristically. In contrast, an advantage of the formalism

of an explicit network benefit function is that gives precision to the alternative of interest (in

turn suggesting a suitable, in fact, optimal test statistic).26

The left panel of Figure 5 plots simulation estimates of the distribution of the 90 � 50

betweenness-centrality gap across three reference sets of networks: (i) Ërdos-Rényi graphs

with the same number of links as observed in Nyakatoke, (ii) the set of all graphs with the

same in- and out-degree sequences as observed in Nyakatoke, and (iii) the set of all graphs

which additionally constrain the number of cross-group links to be the same as observed in

Nyakatoke. The vertical line in the figure marks the value of the actual 90� 50 betweenness-

centrality gap in Nyakatoke.

The three reference distributions in Panel A allow us to undertake three model adequacy

tests: is Nyakatoke well-described by (i) the Ërdos-Rényi model, (ii) a directed �-model

which places equal probability on all networks with the same in- and out-degree sequence

as in Nyakatoke, or (iii) by the full baseline model described above (which additionally

accommodates homophily)? In all three cases we reject, but notice that as we enrich the

null model the simulated reference distributions shift to the right.27 Put di↵erently a portion

of the dispersion in betweenness-centrality across households observed in Nyakatoke is likely

a by-product of degree heterogeneity and homophily. The rightward shifts in the reference

distributions as we enrich the null model is indicative of how using a realistic null model may

be important for avoiding spurious rejections in practice. That said, our decisive rejection

of even the 319 parameter baseline model model indicates that degree heterogeneity and

wealth/religion homophily cannot explain all of the inequality in betweenness-centrality we

observe across agents in Nyakatoke.

The right panel of Figure 5 plots the null distribution of the locally best test statistic

for the alternative that households gain utility by bridging disconnected pairs of agents (as

26Of course one can also start with a specific test statistics and then reverse engineer a network benefit
function for which it is locally best. We do not advocate proceeding in this way in practice, but such an
exercise can be useful for understanding the game theoretic implications of test statistics initially proposed
in other settings. We thank the co-editor for this observation.

27The incremental e↵ect of additionally controlling for homophily is modest.
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Figure 5: Testing for bridging/brokerage preferences

Source: De Weerdt (2004) and authors’ calculations.
Notes: Panel A presents MCMC estimates of the distribution of the 90 � 50 betweenness-
centrality gap across agents for three reference sets of networks (as listed in the legend).
Panel B shows the null distribution of the locally best test described in the main test. In
this panel the reference set is all networks with the same in- and out-degree sequences and
cross-link matrix as observed in Nyakatoke.
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formalized by Kleinberg et al. (2008)). If we are willing to maintain that the true data

generating process is either in the null or specified alternative model space, we can interpret

a rejection as evidence for �0 being positive. To implement this test we replace �0 with its

maximum likelihood estimate (MLE) computed under the null.28 As is clear from Panel B

of Figure 5, we decisively reject the null.

Panel B is also suggestive of the power gains associated with the locally best test. If we

were to standardize each of our test statistics using their respective reference distribution’s

mean and standard deviation, it is obvious that the locally best test statistic is more extremely

positioned in the right tail of its null distribution (the Monte Carlo experiments reported in

the Supplemental Web Appendix confirm the power advantages of the locally best test).

Using Algorithm 1 requires a choice of the mixing time parameter ⌧ . Although the mixing

properties of our MCMC procedure are largely unexplored, we have found - by Monte Carlo

experimentation – that choosing ⌧ such that each edge in the input graph is, on average,

swapped at least once before the resulting output is considered a uniform random draw from

the target set to yield acceptable results in practice. We use this approach here (also see

the Python Juypter Notebook in the Supplemental Materials). The required value for ⌧ is

increasing in the dimension of the nuisance parameter � and especially in the dimension of

⇤. Hence the speed of the simulation algorithm declines in both N and K.

5 Limitations and future research

The analysis in this paper, like much of the wider econometrics literature on games, is

likelihood based. Our null model is fully parametric (albeit flexibly-so), while the alternative,

due to the unmodeled NE selection function, is semiparametric. Under correct specification

our test reveals whether �0 = 0 or �0 > 0 (with a researcher-specified exact Type I error rate,

and a locally best Type II error rate). That is, we present a method for detecting whether

agents form links “strategically” in the presence of any pattern of homophily and degree

heterogeneity allowed by the baseline null model.

It would be interesting to know whether detecting strategic interaction in the presence

of arbitrary homophily on observables and degree heterogeneity is possible. We know from

the panel data literature that detecting state-dependence in the presence of heterogeneity is

non-trivial and that modeling details matter (e.g., Chamberlain, 1985). Analogous questions

arise here.
28The computation of this MLE is described in detail by Yan et al. (2018) and implemented in our Python

package ugd for “uniform graph draw”. Additional discussion can be found in the Python Jupyter notebooks
included in the Supplemental Materials.
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Our set-up assumes that researcher is able to a priori partition the support of agents’

covariates into K regions along which all homophilous sorting occurs. In practice this is an

approximation. Developing data-based discretization rules (e.g., using clustering algorithms)

and formalizing the nature of the approximations involved would be useful. It is possible that

recent results on randomization inference by Canay et al. (2017) could be useful for such an

analysis.

We conjecture that, for K su�ciently large, further increases in it will reduce power. In

contrast, too coarse of a covariate partition could lead the researcher to reject not because

of any strategic interaction, but simply because the baseline model is misspecified.29 Note

our test correctly rejects the null in this case, the subtlety centers upon interpretation. Such

concerns arises in other specification testing problems.30 Our test could also reject in the

presence of homophily on latent attributes.

Key to our set-up is the exponential family structure (under the null) induced by the

assumption of logistic random link-specific utility. While this is a strong assumption, it

comes with considerable pay-o↵: we are (i) able to exactly control size in (ii) the presence

of a high dimensional nuisance parameter while (iii) also making no assumptions about

equilibrium selection. Exponential family structures has proved highly fruitful in other areas

of econometrics; applications in panel data being most closely connected to the present

setting. Our similarity and local optimality results build on classic results in the theory of

testing in exponential families (e.g., Ferguson (1967) and Lehmann and Romano (2005)).

Recent work studies dyadic regression in settings richer than our baseline model (e.g., Gao,

2020). Adapting such work to our testing problem would be an interesting area for future

research. The loss of exponential family structure would mean a loss of exact size control

and optimality. However, the insight that score tests in the direction of certain alternatives

can be constructed without modeling the details of NE selection should still hold. Any such

extension would require di�cult asymptotic arguments; but we expect insights from the

large-N , large-T panel data literature (e.g., Fernández-Val and Weidner, 2016) as well as the

large games literature (e.g., Menzel, 2016) to be useful in any such extension.

While obvious, and generic to most testing problems, it is important to understand that

our test may have low power in some directions (in extreme cases even power equal to

size). As an example imagine agents gain utility from linking with popular agents (as in

preferential attachment models), such that gi (d) =
P

j 6=i
dij

hP
k 6=i

dkj

i
. This model yields

sij (d) =
P

k 6=i
dkj, which is almost equal to the indegree of agent j. Hence the distribution

29We thank the referees for this observation.
30For example a Sargan-Hansen test of over-identifying restrictions might reject in the linear instrumental

variables setting because one of the instrument exclusion restrictions is violated or because of treatment e↵ect
heterogeneity; with rather di↵erent implications for how to proceed in each case.
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of sij (D) across Ds,m will be nearly degenerate. Examples of this type are not unique to our

setting. See Lehmann and Romano (2005) for general impossibility results.

Finally, while we are able to prove that our simulation algorithm works for ⌧ “large

enough”, we don’t currently have a formal handle on the mixing properties of our MCMC

algorithm. This is not just a limitation of our work, but of much of the related work in the

discrete math and computer science literature (e.g., Cooper et al. (2007) and Erdos et al.

(2018)). Our limited simulation experiments suggest relatively fast mixing. 31

These limitations notwithstanding, we nevertheless see potential for the widespread use

of the methods presented in this paper in empirical social and economic network research

(and, with modification, in other settings where strategic interaction is important). We

hope that the ability to easily embed formal game-theoretic models of network formation of

the type surveyed by, for example, Jackson (2008) and Goyal (2023) into heterogeneity-rich

dyadic linking models will be attractive to empirical researchers. While not emphasized here,

we also expect our simulation algorithm to find use in other settings where binary matrix

simulation is an important part of researchers’ toolkits (e.g., Gotelli, 2000). Finally our

focus on score type tests may represent a fruitful direction for further research on testing in

incomplete models (e.g., Chen and Kaido, 2021).

The Supplemental Web Appendix shows how to adapt our results to bi-partite networks.

There we show how ideas in this paper might be used to, for example, study airline entry

into di↵erent routes as in Ciliberto and Tamer (2009). The set-up allows for complex airline

preferences over their own route map as well as the route maps chosen by their competitors.

We also shows how our simulation algorithm can be used for more traditional conditional like-

lihood estimation and inference problems. A carefully annotated Python Jupyter, Notebook

illustrating how the methods in this paper work in practice, is available in the Supplemental

Materials.
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de Paula, Á. (2020). Econometric models of network formation. Annual Review of Economics,

12:775 – 799.
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Erdős, P., Hartke, S. G., van Iersel, L., and Miklós, I. (2017). Graph realizations constrained

by skeleton graphs. Electronic Journal of Combinatorics, 24(2):1 – 18.

Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Academic

Press, New York.

Fernández-Val, I. and Weidner, M. (2016). Individual and time e↵ects in nonlinear panel

data models with large n, t. Journal of Econometrics, 192(1):291 – 312.

Freeman, L. (1977). A set of measures of centrality based on betweenness. Sociometry,

40(1):35 – 41.

Fudenberg, D. and Tirole, J. (1998). Game Theory. The MIT Press, Cambridge, MA.

Gao, W. Y. (2020). Nonparametric identification in index models of link formation. Journal

of Econometrics, 215(2):399 – 413.

Gotelli, N. A. (2000). Null model analysis of species co-occurrence patterns. Ecology,

81(9):2606 –2621.

Goyal, S. (2023). Networks: An Economics Approach. The MIT Press.

Goyal, S. and Vega-Redondo, F. (2007). Structural holes in social networks. Journal of

Economic Theory, 137(1):460 – 492.

Graham, B. S. (2017). An econometric model of network formation with degree heterogeneity.

Econometrica, 85(4):1033 – 1063.

Graham, B. S. (2020). Handbook of Econometrics, volume 7A, chapter Network data. North-

Holland, Amsterdam.

46



Graham, B. S. and Pelican, A. (2020). The Econometric Analysis of Network Data, chapter

Testing for externalities in network formation using simulation, pages 65 – 82. Academic

Press, London.

Grandjean, M. (2016). A social network analysis of twitter: Mapping the digital humanities

community. Cogent Arts & Humanities, 3(1):1171458.

Ho↵, P. (2005). Bilinear mixed-e↵ects models for dyadic data. Journal of the American

Statistical Association, 100:286–295.

Holland, P. W. and Leinhardt, S. (1976). Local structure in social networks. Sociological

Methodology, 7:1 – 45.

Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press, Princeton.

Jackson, M. O., Rodriguez-Barraquer, T., and Tan, X. (2012). Social capital and social quilts:

network patterns of favor exchange. American Economic Review, 102(5):1857–1897.

Jackson, M. O., Rogers, B. W., and Zenou, Y. (2017). The economic consequences of social-

network structure. Journal of Economic Literature, 55(1):49 – 95.

Jackson, M. O. and Wolinsky, A. (1996). A strategic model of social and economic networks.

Journal of Economic Theory, 71(1):44 – 74.

Jia, P. (2008). What happens when wal-mart comes to town: an empirical analysis of the

discount retailing industry. Econometrica, 76(6):1263 – 1316.

Jochmans, K. (2018). Semiparametric analysis of network formation. Journal of Business

and Economic Statistics, 36(4):705 – 713.

Johnson, C. and Gilles, R. P. (2000). Spatial social networks. Review of Economic Design,

5(3):273 – 299.

Kaido, H. and Zhang, Y. (2019). Robust likelihood ratio tests for incomplete economic

models. arXiv Working Paper arXiv:1910.04610v2 [econ.EM], Boston Univerity and Jinan

University.

Kim, H., Genio, C. I. D., Bassler, K. E., and Toroczkai, Z. (2012). Constructing and sampling

directed graphs with given degree sequences. New Journal of Physics, 14(2):023012.
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