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Abstract

Consider a setting where N players, partitioned into K observable types, form a di-
rected network. Agents’ preferences over the form of the network consist of an arbitrary
network benefit function (e.g., agents may have preferences over their network central-
ity) and a private, or dyadic, component which is additively separable in own links.
This latter component allows for unobserved heterogeneity in the costs of sending and
receiving links across agents (respectively out- and in- degree heterogeneity) as well as
homophily/heterophily across the K types of agents. In contrast, the network benefit
function allows agents’ preferences over links to vary with the presence or absence of
links elsewhere in the network (and hence with the link formation behavior of their
peers). In the null model, which excludes the network benefit function, links form inde-
pendently across dyads in the manner described by |Charbonneaul (2017) among others.
Under the alternative, there is interdependence across linking decisions (i.e., strategic
interaction). We show how to test the null with power optimized in specific directions.
These alternative directions include many common models of strategic network forma-
tion (e.g., “connections” models, “structural hole” models etc.). Our random utility
specification induces an exponential family structure under the null which we exploit
to construct a similar test which exactly controls size (despite the the null being a
composite one with many nuisance parameters). We further show how to construct
locally best tests for specific alternatives without making any assumptions about equi-
librium selection. To make our tests feasible, we introduce a new MCMC algorithm for
simulating the null distributions of our test statistics.

JEL Codes: C31, C57

Keywords: Network formation, Locally Best Tests, Similar Tests, Fxponential Fam-
ily, Incomplete Models, Degree Heterogeneity, Homophily, Binary Matriz Simulation, Edge
Switching Algorithms, Markov Chain Monte Carlo, Partitioned Graph
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In an economic model of directed network formation agents purposefully direct links
to one another in order to maximize utility. A payoff function maps all possible network
configurations into agent utilities. Agents use this payoff function to weigh the benefits of
directing any particular link against the costs of doing so. A Nash Equilibrium (NE) network
arises when all agents link choices are individually optimal given the choices made by other
agents (e.g. Bala and Goyal, [2000).

Important examples of directed link formation in economics include firms choosing their
suppliers (e.g.,|Atalay et al.,|2011;|Amelkin and Vohra, [2023), social media users choosing who
to follow (e.g., Grandjean, |2016), adolescents selecting friends (e.g., Christakis et al., [2020),
banks extending credit (or not) to firms (e.g., [Marotta et al., [2015), and village households
seeking assistance from peers in times of economic stress (e.g., |De Weerdt, 2004). |Jackson
et al. (2017) present many other examples of networks in economics. Such data abound in
other social sciences as well (e.g., Apicella et al., [2012).

The utility an agent receives when she directs a link to another agent can be usefully
divided into two ComponentSE] The first component is “private”, or, more precisely, dyadic.
It is invariant to the presence or absence of other links in the network (beyond the one at
hand). The second component is “social”, or varying with the presence or absence of other
links in the network.

An example of the first component is the payoff associated with a homophilous link
(McPherson et al., |2001), which depends only on the attributes of the sending (ego) and
receiving (alter) agents. Another example is associated with “degree heterogeneity”: agents
may vary systematically in the utility they generate by directing links (out-degree heterogene-
ity), or in their attractiveness as link targets for others (in-degree heterogeneity). Finally,
we might posit that the payoff from any particular link varies for idiosyncratic reasons, as in
other random utility models (RUMSs) of discrete choice (McFadden, 1974). Empirical mod-
els of network formation with these features were formally studied by |Charbonneau (2017),
Graham| (2017), |Dzemski (2018), |[Jochmans| (2018) and [Yan et al. (2018). These models are
fundamentally dyadic: agents’ network payoffs are a simple sum of link-specific payoffs and,
crucially, invariant to the linking behavior of other agents.

However, in some situations, agents may also value indirect links. For example, an arc
from 7 to k may incidentally reduce the shortest path length from ¢ to k, allowing agent ¢
better access to k’s information (e.g., |Jackson and Wolinsky, |1996; Bala and Goyal, [2000).
While arc jk is valued by ¢, this value is not incorporated into j’s decision to direct the arc

or not. Preferences of this type mean agents’ decisions impose externalities on others. The

'In digraphs, or directed networks, it is customary to refer to edges as “arcs”. Here we use the terms link,
edge, arc, friendship, relationship, etc. interchangeably.
2¢Other links” include those directed by the sending agent to targets other than the one at hand.



detection of such externalities is the subject of this paper.

When links made by one agent alter the incentives for link formation faced by others,
equilibrium network configurations may diverge from socially optimal ones (Goyal, 2023).
This, in turn, suggests that well-designed interventions might make agents better off. In con-
trast, without a wedge between the private and social benefits of link formation, equilibrium
and socially optimal networks will coincide. This paper introduces a test for whether agents’
own incentives to form links vary with the choices of others. A rejection of our test, under the
maintained model, indicates the presence of externalities, with their attendant implications

for optimal policy design.

An overview of the test and its uses

Strategic network formation games are complicated. In a directed network with N agents,
there are n = N(N — 1) strategic decisions to make, and hence a total of 2" possible action
profiles or network configurations; many of which may be Nash Equilibria (NE). In the sem-
inal model of directed network formation introduced by Bala and Goyal (2000), for example,
with N = 5 agents there are 1,069 NE networks. This combinatoric complexity, renders
methods pioneered for the econometric analysis of discrete games with just a few players ill
suited for network formation games.

In recent work, |Christakis et al. (2020), Mele (2017), Miyauchi| (2016), |de Paula et al.
(2018) and [Sheng| (2020) each proposed empirical models of strategic network formation[]
Each of these models impose particular restrictions on the form of the network payoff func-
tion, the nature of any unobserved heterogeneity, and/or make assumptions about equilib-
rium selection. For example, |Christakis et al. (2020) and Mele (2017) resolve incompleteness
by assuming agents form links sequentially, allowing for the application of likelihood-based
methods. [Miyauchi| (2016) requires a super-modular payoff function, de Paula et al. (2018)
a payoff function which varies only with local network structure, while Sheng (2020) focuses
on agents with a taste for transitivity. None of these papers incorporate agent-specific un-
observed heterogeneity. Even with these restrictions, estimating the identified set for the
parameters indexing the network payoff function in these models is challenging, as is con-
ducting inference /]

Unlike this prior work, we do not consider set identification in this paper, focusing instead

3de Paula (2020) surveys work in this area and provides additional references.

4We wish to emphasize that these “critiques” reflect the inherent difficulty of the problem, not any
deficiencies in the above cited papers. Indeed these researchers have shown considerable ingenuity in proposing
ways to make methods designed for games with just a few players scale to the considerably more complicated
many-player network setting. We also comment that these papers don’t all use the same solution/equilibrium
concept.



on the more modest goal of externality detection. With this target question in mind, we
introduce an econometric model of strategic network formation which simultaneously allows
for (i) agents to value both direct and indirect links (i.e., a freely specified network benefit
function), (ii) the systematic returns to link formation to vary with observed dyad attributes,
and (iii) unobserved agent-specific correlated degree heterogeneity. While, relative to prior
work, our focus is narrower, our model is richly featured.

Our setup maps neatly into the “costs versus benefits” payoff structures emphasized in
theoretical models of strategic network formation (see, for example, |Jackson| (2008, Chapters
6 & 11) and (Goyal| (2023, Chapter 3)). Examples of models — (i) suitably enriched to include
covariates, unobserved heterogeneity, and random link utility and (ii) adapted (if needed)
to match our use of NE as a solution concept — encompassed by our framework include the
“connections” model (e.g., Jackson and Wolinsky, [1996; Bala and Goyal, [2000), “structural
hole” or “bridging” models (e.g., Goyal and Vega-Redondo, 2007; Kleinberg et al., |2008)
and the favor exchange or “supported links” model of Jackson et al. (2012). We can also
accommodate tastes for reciprocity, transitivity, network centrality and other forms of indirect
link valuation.

We begin with a baseline dyadic logistic regression model for directed networks. Variants
of this model have featured in applied social science research for decades (e.g., Bennett
and Stam) [2000; De Weerdt, 2004). Early formal econometric analyses include those by
Charbonneau (2017), Jochmans (2018) and Yan et al.| (2018); work that built upon large-
N, large-T panel data research (e.g., |Fernandez-Val and Weidner, 2016) and conditioning
arguments used in fixed-T" panel settings (e.g., Chamberlain|, 1980, 2010).

The dyadic logit model is useful for modeling homophily and degree heterogeneity. We
augment this model with a network payoff term, allowing agents to value indirect links.
The resulting model is quite complicated. Formally it is a very large complete information
simultaneous move game. While we assume that the observed network is a NE, we make no
auxiliary equilibrium selection assumptions

Let K be the (finite) number of support points in the distribution of observed agent
attributes and N the number of agents.ﬁ Our model includes (i) K2 “homophily” parameters,
collected in the K x K matrix A déf [Awi] for k1 = 1...K, capturing how link returns
vary systematically with ego and alter attributes (we define A Y vec (A")), (ii) two N x 1
parameter vectors A 24 [A4;] and B 24 [B;] for i = 1... N, capturing, respectively, agent-

specific out- and in-degree heterogeneity, and (iii) a scalar parameter, v, measuring the

5More precisely the observed network is either a pure strategy NE or in the support of a mixed strategy
NE (in fact our results hold under an even weaker notion of equilibrium, as explained below).
6That K is finite with K < N is a strong assumption; one we return to below.



extent to which agents value indirect links. Our model also includes (iv) an “equilibrium
selection” function (This function assigns probabilities to all game outcomes consistent with
NE equilibria for every possible realization of the n = N(N — 1) link-specific random utility
shocks, U = Ui <ijen)-
of multiple equilibria, this function is not specified by the analyst, but enters our analysis
abstractly (see Theorem [1.1| below).

We treat 6 = (X, A/, B’) as a (high dimensional) nuisance parameter and the equilibrium

Since we are agnostic about which NE is selected in the presence

selection mechanism as a nuisance function. This focuses our attention solely on the strategic
parameter v. While, in principle, an analysis of the identified set for v might be possible, we
instead focus on the one-sided hypothesis of Hy : v = 0 versus H; : 7 > 0. Or, put differently,
we identify the sign of fy.ﬂ

Our test involves comparing a statistic of the observed network (e.g., its transitivity index)
with a critical value derived from a reference distribution. Natural questions are: (i) which
reference distribution? (ii) how do I compute the critical value? (iii) which network statistic
should T use? We provide answers to all three of these questions.

There is a long tradition in empirical work of using the Erdos-Rényi model to generate
the reference distribution. This invariably results in “straw man” tests since few real world
networks are well-described by the Erdos-Rényi model. To avoid spurious rejection of the
no strategic interaction null, it is therefore important to use a richer baseline model; one
that might actually describe a real world network. The dyadic logit regression model with
agent-specific fixed effects is one such model. Like its panel counterpart, the dyadic logit
model provides a simple, easy to interpret, and random utility based, model for describing
edge formation. It is sufficiently flexible to match any observed in- and out-degree sequence
as well as rich patterns of homophilous linking. These features are important since heavy-
tailed degree distributions characterize many real world networks, as does homophily (e.g.,
Barabasi, 2016; |[McPherson et al., 2001). While recent research explores more flexible models
of dyadic link formation (e.g., Gao, 2020; |Chen et al., |2021), the logit model remains a
workhorse for practitioners.

Some models of strategic network formation induce link clustering (e.g., Jackson et al.,
2012), while others skewed degree distributions (e.g., Bala and Goyal, [2000). These same
patterns of link formation can also arise for decidedly non-strategic reasons due to homophily

and/or degree heterogeneity. The dyadic logit model, with homophily on observables as well

7Our focus on one-sided hypotheses results in a particularly clean exposition and analysis, allows for the
statement of some optimality results, and covers our main examples of interest. A researcher’s specification of
the network benefit function typically suggests whether the null-alternative pair Hy : v = 0 versus Hy : v > 0
or Hy: v =0 versus H; : v < 0 is most appropriate. Since a researcher can always replace a chosen network
benefit function with its negative, we focus on the former case without loss of generality. Finally, as will
become obvious, much of what follows extends naturally to two-sided hypotheses.
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as unobserved agent-specific ego (sender) and alter (receiver) effects, therefore imposes a
more stringent test for the no strategic interaction null (than an Erdos-Rényi benchmark).

Because § — the parameter indexing the dyadic logit null model — may range freely across
its parameter space when v = 0 our null hypothesis is a composite one. Test size equals
the supremum of the rejection rate across all data generating processes (DGPs) with v = 0.
Because 0 is high dimensional, the null model space is very large and constructing a test with
uniformly good size and power properties is non-trivial (cf., [Moreira, [2009). An additional
non-standard feature of our testing problem is that the nuisance equilibrium selection function
is only present under the alternative (cf., /Andrews and Ploberger, [1994).

Under the logistic assumption on the random component of link utility, using a classic
exponential family conditioning argument, we introduce a family of similar tests. Similarity
means that the size of our test equals « regardless of where we are in the null model space.
Put differently, our test is correctly-sized under null models with A values that result in “very
little” homophily as well as under null models with A values that result in “lots of” homophily.
Similarity also means that the size of our test does not vary with the configuration of the in-
and out-degree heterogeneity vectors, A and B.

We provide an exact characterization of the null distributions of the test statistics in this
family and, crucially, a feasible Markov Chain Monte Carlo (MCMC) algorithm for simulat-
ing from them. Simulating the null distribution requires drawing a binary adjacency matrix
uniformly at random from the set of all adjacency matrices satisfying certain constraints.
Constrained binary matrix simulation has numerous applications in biology, psychology, ecol-
ogy and other fields (cf., Sinclair, [1993; Blitzstein and Diaconis, |2011). Unfortunately, extant
simulation algorithms cannot be used to simulate the null distribution needed here; our al-
gorithm is therefore novel and of independent interest.

We also derive the form of the locally best test under the alternative H; : v > 0. Remark-
ably we are able to do this while remaining agnostic about equilibrium selection. Finally,
because our test is exact, we also side-step difficult issues that arise when undertaking asymp-
totic analysis in the single network context (see Graham (2020) for references and discussion).

Possible applications of the methods introduced in this paper include:

1. Assessing model adequacy or specification testing: The researcher believes the
baseline null model is adequate for the setting at hand, but wishes to report an omnibus
goodness-of-fit test (similar to the practice of reporting the Sargan-Hansen J-Statistic
in the context of GMM estimation). While a rejection in this setting is interpreted as
evidence against the baseline null model, it is not interpreted as evidence in favor of

any particular alternative.



2. Detecting strategic interaction of a specific form: The researcher’s primary
interest is in the specified model and she wishes to sign identify +. In this example
the analysts undertakes empirical work under the maintained assumption that the true
model is either in the null model space or in the specified alternative model space. The

data are used to determine which case prevails.

3. Cataloging ‘“unusual” network features: The researcher wishes to assess whether
certain features of the network in hand are “unusual”. In contrast to the first case, here
the researcher suspects that the network in hand is not well-described by the baseline
one, but, in contrast to the second case, she remains somewhat agnostic about the
form of the true model. The null model defines a set of reference networks with certain
properties identical to those in the network of interest (e.g., the in- and out- degree se-
quences, numbers of links between agents with different covariate configurations). The
researcher can compare features of interest in their network (e.g., diameter, reciprocity,
support) with their distributions across the null reference set to assess whether their
network is, indeed, “unusual”. See |[Holland and Leinhardt (1976) for a discussion of
this type of analysis in sociology, Section 5 of |Jackson et al.| (2012) for an example from
economics; Milo et al. (2002) for an example from computational biology, and (Gotelli

(2000) for a discussion of applications to species co-occurrence analysis in ecology.

While our focus is on strategic network formation, it seems likely that the ideas developed
below could be adapted to design tests appropriate for other incomplete econometric models.
In recent work |Chen et al.| (2018) and Kaido and Zhang (2019) introduced likelihood ratio
type tests applicable to incomplete models. Our test, in contrast, is a conditional score test.
Conditioning, while requiring exponential family structure, is helpful in settings with a high
dimensional nuisance parameter (cf., Moreira, [2009). Our score-based approach may also
have computational advantages in settings where likelihood evaluation under the alternative

is difficult (e.g., when enumeration of all NE is impossible).

Outline of the paper

Section [1] introduces our model of strategic network formation. We begin by defining agent
preferences and characterizing equilibrium networks. Section [2| outlines our approach to test-
ing. We first characterize the exact distribution of any statistic of the adjacency matrix under
the null. Next we derive the form of the locally best test statistic for specific alternatives.
Although we characterize the exact null distribution of our test statistics, for reasons of prac-
tically, we approximate this distribution by simulation. Section [3| outlines our new Markov

Chain Monte Carlo (MCMC) algorithm for generating random draws from the required null



distribution. Section {4 illustrates our methods in the context of the Nyakatoke risk-sharing
network studied by De Weerdt (2004) and others. Section [5|finishes with a short discussion of
limitations of our methods as well as a few thoughts on possible areas for additional research.

Proofs as well as some Monte Carlo simulation results are collected in a Supplemental
Web Appendix. This appendix also includes a discussion of some additional applications of
our MCMC simulation algorithm.

Readers interested primarily in applications can read Section [} the first part of Section
and the empirical illustration of Section . The balance of the paper can be read later (perhaps

after viewing the Python Jupyter Notebook available in the supplemental materials).

1 A family of empirical models of strategic network

formation

1.1 Notation and setup

A directed graph G(V, A) consists of a set of vertices (agents) V = {1,..., N} and a set of
ordered pairs of nodes, respectively called egos and alters, A = {(i,7), (k,1),...} for i # j,
k # 1, and ,7,k,1 € N. The elements of A correspond to those arcs, or directed links,
present in G(V, A).

In what follows we typically work with the adjacency matrix D = [D;;] where

Dij:{l ifijed 1

0 otherwise

Since we rule out self-links, the diagonal of D consists of structural zeros.

Let G —ij denote the network obtained by deleting link ¢j from G (if present), and G +1j
the network one gets after adding this link (if absent). Let D =+ ij denote the adjacency
matrix associated with the network obtained by adding/deleting link ij from G.

The set of all 2V(N=1 possible adjacency matrices on N labeled vertices is denoted by
Dy. Hence d € Dy is a feasible network wiring or, equivalently, a game outcome. Let d; be
the i row of d, or a pure strategy selection for agent i (i.e., a binary vector indicating which
edges she chooses to direct). A pure strategy profile for all players other than i is denoted
by d_;. We will sometimes refer to “players other than ¢” as i’s peers.

2N=1 possible actions, corresponding to all possible

de
For each agent there are M Ef
configurations of links she may direct towards her peers. A mixed strategy for agent i,

o; = (71, T2, - .., Tari) , is a probability distribution on these M possible pure strategy se-



lections; 0 = (01,09,...,0x) is a mixed strategy profile for all N agents, while o_; is the

strategy profile of agent i’s peers.

1.2 Payoff function

The utility or payoff agent ¢ gets from network d is

vi (di,d—i50,U;) = i(d)  — dijcij (Xi, X350, Uy 2
( ) Yo0gi (d) Z iCij ( J i) (2)
Network Benefit J ,

Link “Costs” (i.e., private utility)

with ¢; (d) a known, but not necessarily closed-form, function of the network adjacency
matrix, normalized such that g; (0) = 0, # = (v,0")’, and the link “costs” function taking the
form

Cij (Xza Xj; 5, Uz]) - — [Az + Bj + X;A()XJ - Ulj] y (3)

where X; is a K x 1 vector of mutually exclusive group membership indicators that is ob-
served by the econometrician and U; = (Un,...,Usy_1,Usit1, ..., qu), is agent i’s vector
of idiosyncratic logistic preference shocks over the N — 1 possible links she can direct (and
U= (Uj... ,U?V)’)E‘ All agents observe their own, as well as their peers’, preference shock
vectors. As is standard in game theory (e.g., Fudenberg and Tirole, 1998), we use, in a
small abuse of notation, v; (0;,0_;; 6, U;) to denote agent i’s expected utility under the mixed
strategy profile o = (0;,0_;).

The first term in captures how agent i’s utility varies with the entire structure of the
network; this may include benefits from direct, as well as indirect connections. The second
term in (2)) captures the purely private benefits to i associated with directing an arc to j.
That is, the component of utility associated with arc 75 that does not vary with the presence
or absence of links elsewhere in the network.

In theoretical work g¢;(d) is often called the network benefit function, while
¢ij (Xi, X550, U;;) would be typically associated with the cost of forming edge ij (e.g., | Jack-
son}, 2008; (Goyal, 2023). These costs are generally assumed constant in theory research, while
— as is appropriate given the empirical context — they are heterogeneous across agents and
links here.ﬁ The placement of a negative sign in front of the second term in is in keep-
ing with the “costs” nomenclature of the theory literature, but is without loss of generality:

—cij (Xi, Xj; 0, Uy;) is simply the portion of the payoff i gets from directing an edge to j that

8More generally X; enumerates the support points of a collection of (observed) discrete agent-specific
regressors (or a partition of this support into K regions).

9Johnson and Gilles (2000) study the implications of cost heterogeneity on equilibrium network structure
in the “connections” model.



is invariant to all other linking decisions.

While the benefit-cost nomenclature is useful for developing intuitions about the form
of NE in this setting, to reiterate, what is essential here is that the first term may vary
arbitrarily with d, and hence with peer actions, while the second term is invariant to peers’
actions and, furthermore, additively separable in own actions. In what follows we call the
(negative of the) j"* summand in the second part of the baseline utility that i gets from
directing edge 7.

Baseline utility

Considering baseline utility first, we see it is increasing in A; and B;. Agents with high
values of out-degree heterogeneity A; get a large amount of baseline utility from any link
they send. In a social network context high A; agents are “extroverts”. Agents with high
in-degree heterogeneity Bj, in contrast, are especially attractive targets, or alters, for links
sent by others. In a social network high B; agents are “prestigious” or “popular”m

d
The X[A¢X; = Wi Ao term allows baseline utility to depend on whether agents assorta-

tively match on their attributes (we define W;; = (X; ® X;) and recall that A Y e (A)).
The elements of the K x K matrix A = [\y] parameterize the systematic utility generated
by links, say, from group k to group [. For example, in a social network girls might, all things
equal, prefer other girls as friends. The Ay matrix parameterizes homophily (or heterophily)
of this type.

In our fixed-N setting {A4;}~ | and {B;}Y | are fixed-dimensional parameters. We further
treat {Xi}ij\il as non-stochastic in what follows. Note that, as in fixed-effect panel data
analysis, {(A;, B;)'}i, and {X;},, may freely correlate

The final component of baseline utility is idiosyncratic; we assume that the {U;;},z; are
independent and identically distributed (iid) logistic random variables. The logistic assump-
tion generates exponential family structure which we exploit when forming our test.

Equation with v = 0 gives agent preferences under our baseline or null model (essen-
tially the dyadic link formation model studied by |Charbonneau (2017)). This model, when
fitted by maximum likelihood, can successfully match many features of real world networks.
Specifically arbitrary in- and out-degree sequences and assortative linking patterns on discrete
agent attributes (cf., Graham) 2020). The model cannot accommodate homophilous sorting

on latent attributes (a limitation which may affect the interpretation of a test rejection). It

10 Alternatively we can think of high A; agents as being able to direct links at low cost, and high B, agents
y g g g 5 gh bj ag
as being low cost alters.
HAn implication is that {(4;, B;, X!)’ N need not be i.i.d. There is no re uirement, for example, that
p ) 1=1 q p
the agents in the network are a random sample from some population.



Figure 1: Network benefit function examples

[a]: Bridging [b]: Supporting [c]: Transitivity
® o o ® -®
ko @
@ ® ®

Source: Authors’ calculations.
Notes: Panel [a]: agent i is a bridge from k to j and agent [ is a bridge from j to k. Panel
[b]: edge ij is supported by agent k. Panel [c]: adding edge ij generates a transitive triad.

also maintains a logistic assumption on Uj;, a restriction relaxed by Gaol (2020).
While with v = 0 underpins a growing empirical literature on networks, we are
especially interested in settings where this model does not provide a good description of the

network in hand.

Network benefit function

When ~ > 0, the first term in ([2) — the network benefit function g;(d) — enriches the baseline
model to allow agent preferences over links to vary with the presence or absence of links
elsewhere in the network. The researcher is free to specify the network benefit function as
desired. A few selected examples, drawn from recent theoretical work on strategic network

formation, gives a sense of the range of possibilities.

Example 1.1. (CONNECTIONS) In a seminal paper, |Jackson and Wolinsky (1996), intro-
duced the connections model. In a directed variant, Bala and Goyal (2000) set ¢; (d) =

Do @ <€,~j (&)) where d is the undirected network obtained from d (ie., d = [dzj}
with di; = 1 — (1 —dy) (1 —d;)), ¢ : {1,2,...,N =1} — R is a known function with
¢(k) > ¢(k+1)>0forany k =1,2,...,N —1, and ¢, (&) the shortest path length be-
tween agents ¢ and 7 in d. Agents prefer to be close to other agents in the network in order to
easily access their information, but also wish to maintain as few links as possible, since links
are costly to direct. Strong externalities arise in this model: edge 77 may incidentally reduce
the shortest path length between agents k£ and [, but such benefits are not internalized by

agent 1.
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Example 1.2. (STRUCTURAL HOLE / BRIDGING) [Kleinberg et al. (2008) introduce a
model of network formation inspired by Burt’s (1995) theory of “structural holes”. Burt
(1995) argued that individuals that connect disparate groups within a network gain “bridg-
ing”, “middle-person” or inter-mediation benefits. Such benefits arise from lying on a
(shortest) path connecting two agents not directly connected themselves. Kleinberg et al.
(2008) emphasize the special benefits of lying on length two paths between disconnected
agents. If dy;d;j (1 —dy;) = 1, then i serves as a “bridge” between k and j (see Panel
[a] of Figure . The summation ), dyd;; (1 — dy;) yields a count of the total num-
ber of bridging agents between k£ and j. While agents benefit from serving as a bridge
between two agents, these benefits decline in the number of other agents also serving as
bridges for the same (directed) dyad. This yields a network payoff function of the form
9i(d) = 225 > ksy @ (dridiy (L= diz) , 32 dadyy (1 — dij)) with ¢(0,k) = 0 and ¢ (1,k) >
¢(L,k+1) >0 for k =1,...,N — 2. See Goyal and Vega-Redondo (2007) for a related
model [

Example 1.3. (SUPPORTED LINKS, TRANSITIVITY, RECIPROCITY) Jackson et al. (2012)
introduce a model where agents value supported links. Edge 75 is supported by agent k if
d;jdridi; = 1 (see Panel [b] of Figure . This configuration allows agent k& to monitor, or
referee, relationship ij, making it more valuable. This suggests a network benefits function
of gi (d) = >, dij (3 drid;). 1f, instead, agents value reciprocity we would set g; (d) =
> dijdji; while if they value transitivity in links (see Panel [c] of Figure we would set

9i (d) = 32, dij (3 dindly;)-

Marginal utility

Let, in an abuse of notation, v; (d) = v; (d;, d_;; 0, U;); the marginal utility of arc ij for agent
1 equals

vi(d+1ij) —vi(d) ifd;; =0 (4)

MU;; (d) = {

Marginal utility measures the utility gain (loss) to agent i from adding (subtracting) link j
holding the structure of all other links in the network constant (including any other links
agent ¢ directs). The component of marginal utility associated with the network benefit

function g; (d) plays an important role in our analysis. Define the marginal network payoff

12We  could, inspired by  [Freeman  (1977), also  consider the model  where

agents  directly  value  their  network  betweenness  centrality such  that g; (d) =
1 Z ## of shortest paths from agents j to k which pass through i
(N=1)(N—-2) £vj,keN\{i} # of shortest paths from agents j to k )
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associated with agent i directing a link to j as

si; (d) = gi(d) —gi(d —ij) ifd; =1

Using and yields a marginal utility for arc 5 of
MU;; (d) = Ai + B; + Wi;Xo + 70845 (d) — Ui (6)

As it features in the computation of the optimal test statistic introduced below, it is helpful

to derive the form of s;; (d) for the example network benefit functions introduced earlier.

Example [1.1. (CONNECTIONS) In the connections model, when i directs a link to j she
weakly reduces her shortest path length to all other agents in the network. While there is
no closed form expression for s;; (d) in the connections model, it is straightforward to com-
pute shortest path lengths between agents numerically (many network manipulation software
libraries include routines to do this). If removing (adding) arc ij increases (decreases) i’s

distance to many other agents in the network, then s;; (d) will be large.

Example[1.2. (STRUCTURAL HOLE / BRIDGING) For the bridging network benefit function
sij (d) equals
sy (d) =) ¢ (d,m- (1= drj), 14> ddyy (1 - dkj)> :
kj 1£i
The marginal utility of edge 77 is therefore increasing in the number of agents k£ which direct
edges to 4, but not to j. It is decreasing in the number of agents [ and k in which edges kl

and [j are present (but edge kj is not).

Example E (SUPPORTED LINKS, TRANSITIVITY, RECIPROCITY) In the support model
sij (d) = >, diidk;, which is simply a count of how many agents would support edge ij if it

were formed. When agents have a taste for transitivity we have instead
sij (d) = Z dikdr; + Z dikdjk
k k#j

which is a count of how many transitive triads (involving agent ¢) would be created if edge ij
is added. Finally if agents have a taste for reciprocity we have s;; (d) = d;;; indicating that

the marginal utility of edge ij varies with the presence or absence of the reciprocal edge ji.
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1.3 Equilibrium networks

We assume that the observed network D coincides with the equilibrium outcome of an N-
player complete information game. Each agent (i) observes {(A;, B;, X})}», and {Uij}is;
and then (ii) decides which, out of the N — 1 other agents, to send links to. Agents may play
mixed strategies.
A mixed strategy profile 0* is a NE when § = 0y and U =u, ifforalli=1,..., N,
2 (U;, 0”6, Ui) >V (divU:; 0o, ui) (7)
for all possible pure strategy selections d;. We assume that the observed network D is either

a pure strategy NE or in the support of a mixed strategy NEH
Assumption 1.1. (DATA GENERATING PROCESS)

1. (Non-StocHASTIC X) Let V = {1,..., N} be the N agents in the network in hand,

each with a fized (i.e., non-stochastic) group membership of Xj.

2. (LogIsTiC PREFERENCE SHOCKS) Let U = [Uj;]. . be an N(N — 1) vector of i.i.d.

i)
logistic link preference shocks observed by all agents.
3. (NAsH EQUILIBRIUM) Let 6y € © be the parameter indexing the payoff function .
The observed network D is either a pure strategy NE or contained in the support of a

mixed strategy NE of the strategic form game (V, Dy, {v; (-, 60, Ui) }ic) -

Treating X as non-stochastic simplifies both notation (allowing us to suppress, for exam-
ple, the dependence of payoffs on X) and analysis (see the proof to Theorem below). It
is also without loss of generality. In our setting there is no asymptotic thought experiment
and the fixed N sampling distribution we consider conditions on X throughout. Randomness
across hypothetical replications of the network formation game are due soley to variation in

U and any randomness in NE selection (see below).

130Observe that agent i must consider 2V~ different pure strategy deviations in order to verify that their
chosen strategy is optimal. This may be unrealistic when N is large. A weaker equilibrium requirement, akin
to the notion of pairwise stability introduced by [Jackson and Wolinsky (1996) for undirected networks, is to
require agents to only consider the effects of adding or deleting a single link at time on their utility.

Under this weaker stability notion, which we call single deviation stable (SDS), we only require that the
marginal utility of any link present in the network is non-negative, while that of any link not present is
negative. This implies that the observed network D satisfies the system of N (N — 1) non-linear equations

Dij =1 (A; + Bj + W] Ao + 70545 (D) > Uy;)

fori,j =1,...,N and j # i. While we maintain the NE assumption in what follows, it turns out that our
test is also valid if, instead, the observed network is only SDS. Although single deviation stability is a natural
directed analog of pairwise stability, we are not aware of this equilibrium concept being considered before.
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1.4 Likelihood

In the presence of multiple NE, Assumption imposes no restrictions on which one is actu-
ally realized in the observed network. Our strategic network formation model is incomplete.
Although we remain agnostic about equilibrium selection, it is nevertheless useful to establish
notation for how the unknown selection rule generates an assignment of probability weights
to different game outcomes. Doing so allows us to write down a (well-defined) likelihood for
the network, albeit abstractly.
Let N(d,u;0) be a function which assigns, for U = u, a probability weight to network
d:
N(d,u;0) : Dy x R" — [0, 1] (8)

In order for N'(d, -;0) to be a consistent with NE it must satisfy the conditions of Definition
L1

Definition 1.1. (EQuiLiIBRIUM WEIGHT FUNCTION) For U = u the realized vector of
logistic link preference shocks and 6y the payoff function parameter, let d* (u;6y) be a pure
strategy NE or a network contained in the support of a mixed strategy NE and D%, (u; 6) be
the set of all such networks. Function (8] is such that (i) N (d, u;6) > 0 for alld € D%, (u; 6p)
(ii) Edeﬂ)}fv(u;eo)/\f{d, u;6p) = 1 and (iii) N (d,u;6p) = 0 for all d € Dy \D%, (u; 6p).

If M(d,-;0) satisfies the conditions of Definition [I.1 then the likelihood of observing
network D =d is
P(d;0,N) = N(d,u;0) fu(u)du, (9)

ucRkn
where fu(u) = [, fo(ui;) with fu(u) = e*/[14¢“]*. Of course, for the likelihood (9] to be
well-defined we require that N(d, -; ) is measurable.

Theorem 1.1. (LIKELIHOOD) For any network d € Dy there ezists a measurable func-
tion N(d,-;0) : R® — [0,1], which assigns to u € R™ a NE weight on the pure strategy

combination corresponding to d.

The proof of Theorem can be found in Appendix It follows directly from ideas
in Beresteanu et al. (2011).

Observe that N does not assign probabilities to the selection of particular NE, rather it
assigns weights directly to pure strategy combinations. Consistency of these weights with
NE requires that they only be positive when the combination in question is either (i) a pure

strategy NE or (ii) in the support of a mixed strategy one.
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2 Testing for strategic interaction

In this section we introduce a model adequacy test for the dyadic logit null (the baseline
model). We then show how to optimize the power of this test in certain directions of the
alternative model space.

We begin by describing how to assess the adequacy of the baseline model as a description
of the network in hand. Utilizing a conditioning argument we construct an ezact test of the
null of “correct specification”. An alternative model is not explicitly formulated in this case,
although researcher intuitions about plausible directions of mis-specification typically guides
the choice of test statistic. As shown by Lehmann and Romano| (2005, Theorem 14.6.1,
p. 619), it is impossible to construct a test with power (greater than size) in all possible
directions of mis-specification.

Next we consider applications where the analyst carefully specifies the alternative model
(through an explicit choice of the network benefit function, g; (d)). Here the researcher be-
lieves the true network formation model lies in either the null or the (specified) alternative
model space; the purpose of testing is to decide which situation prevails. In this second ap-
plication, we seek to construct a test which rejects with high probability when the alternative
is true, while continuing to control size under the null.

The mechanics of testing in both cases are the same, the difference lies solely in the
choice of test statistic. This allows us to build up our results in a cumulative fashion. In
sub-section we show how the exponential family structure of the model under the null
of no strategic interaction allows us to construct similar tests. Specifically we control size
exactly by conditioning on the minimally sufficient statistic for the null model parameter,
0. With these basics established, we show in sub-section how to optimize power in the
direction of a particular alternative. This step is non-trivial since under the alternative the
network formation game may exhibit multiple equilibria.

Throughout, and crucially, we wish to remain agnostic about the distribution of any degree
heterogeneity across agents as well as the form of any homophily and/or heterophily. Let A
denote a subset of the K2+ 2N dimensional Euclidean space in which J, = (Ao, Ag, By) is, a
priori, known to lie. For technical reasons we assume that A contains a K2+ 2N dimensional

rectangle. The null model parameter space is
©0={(7,d") : ¥=0,6 € A}. (10)
Our null hypothesis is the composite one:

HO 20 S @0 (11>
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since § may range freely over A ¢ RE*+2N ynder the null.
Under the null the likelihood is Py(d; ) e P(d;(0,8"),Ny) with

No(d, u; ) HH1 i+ By + WA > ;)™

X 1(A + By + WA <) ™™

Under the null the unique “equilibrium” network is the one where all links with positive
marginal utility are present and those with negative marginal utility are not. Uniqueness
follows from the fact that agents’ best responses are constant in the strategy profiles of their
peers when 7 = 0. Consequently the marginal utility of edge ¢j is invariant to the presence
or absence of links elsewhere in the network.

Evaluating the integral @D under the null yields

H = (WA +RA+RB) 1%
i L exp (WA + RIA + RB)
1 1fdi]‘
x , (12)

1+ exp (W, A+ R/A + R/B)

where R; is the N x 1 vector with a 1 in its i clement and zeros elsewhere[]

2.1 Testing without explicit specification of the alternative (i.e.,

baseline model adequacy analysis)

Under the null our likelihood, Py(d;d), is a member of the exponential family. To see this it

is helpful to establish some additional notation. The out- and in-degree sequences equal:

Sou Diy,...,D
g — t _ 1+ N+ ' (13)
Sin D+1,...,D+N
Here D,; = Zj Dj; and D;y = Zj D;; equal the in- and out-degree of agents ¢ =1,..., N.

The K x K cross-link matriz equals

M=) "> DiX;X (14)
(N

MVariants of this likelihood are analyzed by |Chatterjee et al.| (2011), Charbonneau (2017), Graham (2017),
Jochmans| (2018]), [Dzemski| (2018) and [Yan et al.  (2018). See also [Ferndndez-Val and Weidner| (2016)).
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This matrix summarizes the inter-group link structure in the network (homophily). The kI**
element of M records the number of links sent by type k£ agents to type [ agents.

Let S, M be a degree sequence and cross-link matrix. We say S, M is graphical if there
exists at least one arc set A such that G (V, A) is a simple directed graph with degree sequence
S and cross link matrix M. We call any such network a realization of S,M. The set of all
possible realizations of S, M is denoted by Ggnm. D denotes the associated set of possible

adjacency matrices:

def
]D)S,M = {d € IDN : (d1+7 s 7dN+) - Sout: (15>

(dr, v din) =S, Y diXiX) = M} .
J

7

Let T = (Vec (M')’, Sout, Sin),. Note that associated with any graphical realization of T is a
corresponding set of adjacency matrices Dg pp.
With this notation established it is easy to verify that the family of network formation

models under the null of no strategic interaction constitutes an exponential family.

Lemma 2.1. (i) Pos = {Py(d;0) : 6 € A} is an exponential family with t a boundedly
complete sufficient statistic for 5, (1) its probability mass function can be rewritten

as:

Py(d;0) = c(d)exp (t'0), d € A, d € Dy, (16)
: def ' / ' !
with ¢ (8) & [zdeDN exp ([ZL Sy {WA + RIA + RjB}} )] .
Proof. See Appendix O

The sufficient statistics for the K? + N + N elements of the nuisance parameter 4, are (i)
the cross link matrix, (ii) the out-degree sequence and (iii) the in-degree sequence.
Under H, the conditional likelihood of the event D = d is

Py (dé 5) _ 1
ZveDsym Py (v;6) |Ds,m|

Py(dT=t)= (17)
if d € Dg, and zero otherwise. Under the null of no strategic interaction all networks with
the same in- and out-degree sequences and cross link structure are equally likely. Importantly
this conditional likelihood is invariant to the actual value of the nuisance parameter 9.

By conditioning on T, which is sufficient for §, we isolate the information in the data that

is relevant for assessing model adequacy (Barndorff-Nielsen and Cox, [1994). This follows

15A sufficient statistic is (boundedly) complete if, for all (bounded) functions k (t), Eq [k (T)] = 0 for all
Py(d; 6) € Py,s implies that k (T) = 0 almost everywhere. See Section 3.6 of [Ferguson, (1967).
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because conditional on T, the null model completely specifies the distribution of D. Con-
sequently, the distribution of any statistic of the adjacency matrix, say R (D), is also fully
specified. Specifically the null distribution of R (D) is the one induced by a discrete uniform

distribution on Dg n:

| SlM' > 1(R) <) (18)

T deDs,m

Pr(R(D) <r|T;0 € ©g) =

To test model goodness-of-fit/adequacy, we simply check whether the value of R (D) in the
network in hand is at an extreme quantile of this distribution. If it is, we take this as evidence

against the baseline (null) model.

Similarity and conditioning

A test with critical function ¢ (D) will have size « if its null rejection probability (NRP) is

less than or equal to « for all values of the nuisance parameter:

sup Ey [¢ (D)] = s Ey [¢ (D)] = a. (19)
Since the nuisance parameter ¢ is very high dimensional, size control is a priori non-trivial.
For some intuition as to why, consider, as an example, the case where s;;(d) = >, dyids;,
such that agents’ have a taste for supported links when 79 > 0. A natural test statistic in
this case would be some function of D that is increasing in the number of supported links in
the network. The researcher would then reject the null of 7y = 0 when this statistic is large
enough. Unfortunately, the expected number of supported links varies dramatically under
the null depending on the value of §. Certain configurations of A, B and/or A may result
in a network with substantial link clustering (and hence support) even when agents’ have no
taste for support per se. If we choose a fixed critical value for rejection then, depending on
the values of A, B and/or \, size may be very poor.

To avoid any size distortion induced by variation in § over A € RE**2N we exploit the
exponential family structure of our model (under the null). Let T = {t : s, m is graphical}
be the set of possible sufficient statistics T. Instead of choosing a fixed critical value, which
may result in under- or over-rejection, depending on the value of §, we proceed conditionally
on T € T, varying our critical value with T. In this way we ensure good size control. By
conditioning on T we can also remain agnostic about its marginal distribution (and hence
the value of 9, for which T is sufficient).

16Jackson et al. (2012) suggest the fraction of links in the network which are supported.
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Formally, for each t € T we form a test with the property that, for all 8 € ©,
Ey[¢(D)|T = t] = a. (20)
Such an approach ensures similarity of our test since, by iterated expectations,
Ey [¢ (D)] = Eq [Eg [¢ (D)| T]] = « (21)

for any 0 € ©¢ (Ferguson, 1967). By proceeding conditionally we ensure that the NRP is
unaffected by the value of 4.

For any t € T we can construct an ezxact test, as is required by , because our model
completely specifies the distribution of networks conditional on T' = t under the null. Condi-
tion follows immediately. Using some well-known results from the theory of exponential

families, we can make the stronger claim that similarity is only possible by conditioning.
Lemma 2.2. (SIMILARITY) Any similar test of Hy : 6 € ©y satisfies forallt € T.

Proof. By Lemma above, T is a boundedly complete sufficient statistic for 6 under the
null. The claim then follows from Ferguson| (1967, Definition 4 and Theorem 2, Section
5.4). m

Implementation

For concreteness let R(D) be the network reciprocity index (Newman, [2010):

2P
R(D)= —1 (22)
2P + Py
where
A 9 N-1 N
Pyp=— [D;; (1 —Dj;)+ (1 — D;;) Dyl (23)
N(N-1) i=1 j=i+1 ’ ’ Y

equals the fraction of dyads which take an unreciprocated or “asymmetric” configuration and

N

9 N-1
Ph=—" D;;D;; 24

the fraction which take a reciprocated or “mutual” configuration.
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A conditional test based upon R(D) will have a critical function of

¢(d) =9 ga(t) R(d)=cqa(t) (25)

where the values of ¢, (t) and g, (t) € [0,1] are chosen to satisfy the requirement that
Ep[¢ (D)| T = t] = . Specifically, given the sufficient statistic T we first compute:

c(T)=min{ce€R : —— > 1(Rd)>c)<a,. (26)

Second we set g, (T) according to

0 = 5 Cacogn L(R() > 0 (T))
|]D@—17M| ZdeDSM 1(R(d) = ca(T))

9o (T) =

Observe that, formally, the test is randomized. Because the adjacency matrix is a discrete
random variable, with finite support, it will generally not be possible to find a ¢ € R such that
IDsna| " ZdeDs,M 1(R(d) > ¢) exactly equals «. In such cases, the econometrician instead
chooses the highest ¢ € R such that [Dg |~ > depg 1 (B (d) > ¢) is strictly less than o.
She then probabilistically rejects when R (D) = ¢ to ensure proper size. In typical uses
cases, the cardinality of the set Dgn will be intractably large, such that a researcher can
just use a non-randomized test in practice. That is, she will be able to find a ¢ € R such
that [Dgn| ™" > _depg 1 (12(d) > ¢) = a to such a high level of accuracy that there will be
little gained from using a randomized decision rule. In such settings, it would be difficult
to accurately compute g, (t) in any case since the event R (d) = ¢, (t) will occur with low
probability. This will become clearer when we discuss simulation of the null distribution
below.

Under the null all adjacency matrices with the S = s and M = m are equally probable.
By enumerating all adjacency matrices in Ds , we could exactly compute the null distribution
of R (D) and hence the critical values ¢, (t) and g, (t) defined above. In general such a brute
force approach will be infeasiblem Therefore a method of approximating the exact null

distribution is required. The simulation algorithm introduced in Section |3 below provides

ITIn fact very little is known about the set Ds m; for example we are aware of no method for checking whether
a given s, m pair is graphic. From related settings we believe that the cardinality of Ds y,, will typically be
intractably huge even for modestly-sized networks. See |Blitzstein and Diaconis (2011) for discussion of this
point, as well as some examples, from a related setting.
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such a method.

The intuition behind this test is straightforward. If the network in hand has an “unusu-
ally” large value of R(D) relative to the set of all networks with same in- and out-degree
sequences and cross-link matrices, then we reject the null that the baseline model is correctly
specified. A rejection is not interpreted as evidence in favor of a particular alternative model.
Relatedly, a feature of goodness-of-fit tests, including this one, is that we have may have low,
or even power equal to size, in certain directions (Lehmann and Romano, [2005).

Observe that the test is exact, involving no appeal to approximations associated with an

asymptotic thought experiment.

2.2 Optimal testing with an explicit alternative

In this subsection we discuss how to optimize our test when the alternative model space
is explicitly specified. That is, when the researcher explicitly specifies the network benefit
function in and proceeds under the premise that the true network generating process
lies either in the null or the (explicitly specified) alternative model space. In such settings a
rejection provides evidence that vy > 0 (in the context of a specific network benefit function).
Naturally the researcher would like to maximize her power to reject, while continuing to
maintain similarity. To accomplish this requires choosing the right test statistic.

Because an equilibrium selection mechanism is not explicitly specified under the alterna-
tive, likelihood ratio (LR) testing is not feasible (cf., |Chen et al.| 2018). As an alternative
to a LR test, we instead choose, for each t € T, the critical function, ¢ (D) to maximize the
derivative of the (conditional) power function 8 (v,t) = E[¢ (D)| T = t] evaluated at 7 =0
subject to the (conditional) size constraint Ey [¢ (D)| T = t] = a. Such a ¢ (D) is locally best
(Ferguson| [1967, Lemma 1, Section 5.5). Remarkably we show that the locally best test does
not depend upon the form of the equilibrium selection mechanism N (d, u;6).

Differentiating the power function we getFE]

DYl _Els(D)s, (DITi0)T -t (27)

7o P

8Differentiability of the likelihood function is formally established by Theorem [2.3| below.
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with S, (d| t; ) denoting the conditional score function

1 OP (d;0) OP (v;0)
S, (d|t;0) = —
A0 =5 o S L w
1 0P (d;0)
= k(t
Po(d;d) oy | o ®)

and k (t) only depending on the data through T = t. (Here, and in the balance of this
section, it is understood that § is evaluated at the population value dp.) By the Neyman-
Pearson lemma, the test with the critical function given by equation above, where the

test statistic, R(d), is set equal to the log-likelihood gradient, P0(1d-6) apgwi;e) , will be

"yO
locally best within the class of similar tests.

The idea behind the locally best test is as follows. If the likelihood increases sharply as
we move away from the null in the direction of the alternative of interest, then we take this
as evidence against the null. Intuitively if the likelihood gradient in the neighborhood of the
null is large, then the likelihood ratio will also be large for simple alternatives close to the
null (i.e., when v € (0, €]).

Constructing the locally best critical function requires calculating jx (11_ 5 8PE§3;0) . This

K ’Y:O
is not straightforward since it depends on properties of the likelihood under the alternative
(and consequently the equilibrium selection function). Nevertheless, we are able to derive

the form of this derivative.

Theorem 2.3. (LocALLY BEST TEST) (i) P (d;0,/N) is twice differentiable with respect to
v at vy =0. Its first deriwative at v =0 is

PEIN| s

oy =0 '
3  fulpy) o S ()

X [Z 53 (d) {dl] T Jo (u)du (1 d”)—fij o (0) du}] . (28)

i#j

where ju;; = A; + B + X; Ao X; equals the systematic, non-strategic, component of utility gen-

erated by arc ij and fy is the logistic density; (ii) the test statistic R (d) = Po(fw) apa(j;a)
b PY:O

yields the locally best test in the direction of the specified alternative within the class of similar

tests.

The proof of Theorem [2.3] along with some additional commentary, can be found in
Section of the Supplemental Web Appendix. A key implication of Theorem [2.3]is that
the form of the locally best test statistics does not depend upon N, and hence the equilibrium
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selection mechanism. This is essential, since optimal testing would not be feasible otherwise
(at least without additional assumptions). One intuition for this finding is that equilibrium
is unique with high probability when ~ is close to zero. This means we can effectively ignore
draws of U which lead to multiple equilibria when differentiating the likelihood.

Indeed, when 7 is close to zero most players will have a strictly dominant strategy (that is
the optimal set of links for them to send will be invariant to the play of their peers). Of course
we need more information to recover the gradient with respect to 7, since this parameter
measures the responsiveness of agents to their peers’ actions. It turns out that a key scenario
used in the derivative calculation involves considering draws of U where all players except
one have strictly dominant strategies. The one player without a strictly dominant strategy
provides the needed gradient information. This player’s actions are sensitive to the play of
their peers’ — this delivers non-trivial gradient information — but NE is still unique in this
scenario such that the details of equilibrium selection do not matter. In the proof we show
that the effect of realizations of U associated with multiple NE is negligible when ~ is small

enough.

Locally best vs. heuristic test statistics

With a little manipulation we can simplify to:

1 0P (d;0)

2 (CL 5) o - Z [dlj —Fy (:uij)] Sij (d) (29>

7= i

where Fpy (u) = e*/[1 + €] is the logistic CDF. This form of the statistic provides insight
into how our test accumulates evidence against the null in practice. Consider the case where
sij (d) = dj;, as would be true when agents’ have a taste for reciprocated links. Observe that
Fy (145) corresponds to the probability of the edge ij under the null. Therefore the optimal
test statistic is large if we observe that many ¢7 links with low probability under the null are
reciprocated. It is not many reciprocated links that drives rejection per se, but the presence
of many “unexpected” reciprocated links.

Consider a network of boys and girls with agents exhibiting a strong taste for gender-
based homophily. The optimal test statistic in this case is the conditional sample covariance
of D;; and Dj; given (A;, B;, X;) and (A, B;, X;). The test based upon the reciprocity index
is — essentially — based upon the unconditional covariance. The effect of conditioning is to,
for example, give more weight to heterophilous reciprocated links than to homophilous ones.
Similarly we give more weight to reciprocated links across low degree agents, than to those

across high degree agents.
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We close by observing that the locally best property, like similarity, is a non-asymptotic
one. In our “finite sample” setting we can say nothing about test consistency. We also note
that optimality is in the region of 79 = 0. Test power does not have to be monotonic in 7y

as we move far from zero. This is a feature of many other score tests.

Implementation

Two practical issues remain. The first, how to simulate the null distribution of the test
statistic, is covered in the next section. Second, although the locally best test statistic does
not depend on the details of equilibrium selection, it does depend on dy. Although the test
will remain admissible when ¢ is replaced by some other, perhaps arbitrary, ¢, it will not be
locally best.

A practical solution to this problem is to replace §, with its joint maximum likelihood
estimate (MLE) computed under the null. This particular MLE is elegantly studied by
Fernandez-Val and Weidner (2016) (see also [Yan et al. (2018)). We emphasize that the
feasible test based on the MLE is no longer locally best. When ¢, is poorly estimated, as
may occur when D is sparse, the power of the feasible test could be appreciably lower than
that of the oracle["¥] The feasible test remains admissible.

Nevertheless, in our Monte Carlo experiments, some of which are reported in the Sup-
plemental Web Appendix, we have found that replacing oy with its MLE, results in a test
which is nearly as powerful as the infeasible oracle test based on §y, and far more powerful
that tests based on ad hoc statistics. This is true even in the “sparse” designs we consider.
Of course this finding is specific to the particular experiments we considered. It would be
interesting to study how to choose § € A rigorously. While replacing d, with a “good guess”
seems sensible, what constitutes a “good guess” in this setting is a a topic we leave for future

research.

3 Simulation: drawing uniformly at random from D,

Because a complete enumeration of Ds , is not feasible unless N is very small, making our
test practical requires a method of constructing uniform random draws from this set. Such
draws can be used to simulate the null distribution of any test statistic of interest.

The problem of simulating networks with fixed degree sequences is well-studied; with
many domain specific applications (e.g., [Sinclair, [1993). We add to this problem the addi-

tional requirement that the simulated network satisfies the cross-link matrix constraint.

19We thank a referee for raising this concern.
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Prior work on network simulation adopts one of two basic approaches. The first approach
begins with an empty graph and randomly adds links. Links need to be added such that the
end graph satisfies the degree sequence constraint. Blitzstein and Diaconis (2011) develop an
algorithm along these lines. They cleverly use checks for graphicality of a degree sequence,
available in the discrete math literature, to add links in a way which constrains the end graph
to be in the target set ]

The second approach, to which our new method belongs, uses Markov Chain Monte Carlo
(MCMC). Specifically an initial graph, satisfying the target constraints, is randomly rewired
many times to create a new graph from the target set. Key to this approach is ensuring that
each rewiring is compatible with the target constraints (e.g., maintains the network’s degree
sequence). The algorithm also needs to be constructed carefully to ensure that the end graph
is a uniform random draw from the target set. Sinclair (1993), Rao et al.| (1996), McDonald
et al.| (2007), [Berger and Miiller-Hannemann| (2009) and Tao (2016) all developed MCMC
methods for simulating graphs (or digraphs) with given degree sequences.

We are aware of no method of generating adjacency matrix draws from Dy ,,. The novelty
of this problem, relative to the work described above, is the presence of the additional cross
link matrix constraint, M. In the discrete math literature the cross link matrix constraint
corresponds to what is called a partition adjacency matrix (PAM) constraint. |Czabarka
et al.| (2021) conjecture that determining whether a given s, m pair is graphical, the PAM
realization problem, is NP-complete. If their conjecture is correct (and NP # P), using a
Blitzstein and Diaconis (2011) type algorithm to draw from Ds , is not feasible.

This leaves MCMC methods. [Erdos et al. (2017) showed that naively incorporating a
PAM constraint into existing MCMC algorithms destroys their correctness. In this section
we introduce a new MCMC algorithm that does generate uniform random draws from Dg .
This algorithm is of independent interest. Before describing the algorithm we introduce some

additional definitions and notation.

20Gee also [Del Genio et al. (2010) and [Kim et al. (2012)). (Graham and Pelican (2020) provide a textbook
discussion of the [Blitzstein and Diaconis (2011) algorithm.
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3.1 Notation and definitions

We start by defining an alternating walk.

Definition 3.1. (ALTERNATING WALK) An alternating walk H is a sequence of (ordered)
dyads of the form

H = (ih 22) 5 (ig, 22) y (ig, Z4) geeny (il, il—l) (30)

or

H = (in,i1), (iny i), (ia, i) - -, (i1, i2) (31)

with i, € V(GQ), ig # iks1, ik # ig_1and

(i) if (ig,ix—1) € A(G), then (ig,ixr1) ¢ A(G)

(ii) if (ig,ix—1) ¢ A(G), then (ig,irs1) € A(G)
(i) if (ig_1,1x) € A(G), then (igy1,ix) ¢ A(G)
(iv) if (ig_1,ix) € A(G), then (igi1,ix) € A(G)
forall k=2,...,01—1.

For brevity we will often refer to a walk simply by its node sequence, writing H :=
1109, - .y 1.

To unpack Definition it is easiest to consider an example. Observe that for H :=
i1%2, - . ., 41, the adjacency matrix entries D; ;,, Digi,, - .., D;,i,_, alternate between ones and
zeros (or zeros and ones). This observation suggests a method of constructing an alternating
walk via a sequence of “hops” across the adjacency matrix: pick row 4; of the adjacency
matrix and move horizontally to column iy, where iy corresponds to one of the agents to
which 2; directs a link, next move vertically to row i3, where 73 is an agent which does not
direct a link to iy, and so onPT We call the horizontal moves active steps and vertical moves
passive steps. Figure 2| provides an example construction. The different cases in Definition
correspond to walks beginning/ending with passive/active steps.

The length of an alternating walk equals the number of ordered dyads used to define it.
An important type of alternating walk, which following [Tao (2016), we call an alternating

cycle, is central to our algorithm.

Definition 3.2. (ALTERNATING CYCLE) The alternating walk C'is an alternating cycle if

11 = 4; and C has even length.

The length of an alternating cycle is at least four. Let D ., Digiyy..., D be the

ii—1

21This description is essentially due to (Tao, [2016} p. 124).
22Figure @ Panel B, in the Supplemental Web Appendix provides some additional examples of alternating
walks.
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Figure 2: Constructing an alternating walk

B: Degree
A: Alternating Walk Sequence

a b c d e f g h i j Indegree | Outdegree

0 0 0 0 0 0 b 1 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0“0 1 0 j 0 2

Source: Authors’ calculations.

Notes: Panel A depicts an alternating walk 7, g, a, b, ¢, d, e, ¢, a constructed using the adjacency
matrix. The same altering walk is colored blue in Figure[2] Agent labels are given in the first
column and row of the table. To construct such a walk randomly we begin by choosing an
agent at random. Here agent j is chosen, with an ex ante probability of % since there are ten
agents in the network. Next we take an active step where one of agent j’s outlinks is chosen
at random. Here we choose the outlink to agent g, an event with an ex ante probability of
% since agent j has just two outlinks. Following the active step comes a passive step. In a
passive step we move vertically to the row of an agent which does not direct a link to the
current agent. Here we choose a from the set {a, b, ¢, d, e, f,i} uniformly at random (i.e., with
an ex ante probability of %) We continue with active and passive steps until we choose to
stop or can proceed no further. Panel B reports the in-degree and out-degree of each agent
in the network. Observe that in active steps the probability of any feasible choice equals
the inverse of the out-degree of the current agent. In passive steps the probability of any
feasible choice equals the inverse of the number of nodes minus the in-degree of the node
chosen in the prior step minus 1 (since i) # ixy1). We can also construct alternating walks
by the above procedure, but instead starting with a passive step. The shaded cells in the

table shows which edges (ones) and non-edges (zeros) are in the walk.
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sequence of adjacency matrix entries associated with alternating cycle C' in D. These entries
necessarily form a sequence of zeros and ones (or ones and zeros).

Consider constructing an alternative digraph, say D’, by replacing all the “ones” in the
alternating cycle C' with “zeros” and all “zeros” with “ones”. Rewiring D in this way is
degree preserving: D’ has the same in- and out-degree sequence as D. We refer to such
operations as “switching the cycle” (since we switch the zeros and ones).

We use random alternating walks on the network in order to find alternating cycles. We
then use these alternating cycles to rewire the network. This motivates the definition of what
we call a schlaufe. A schlaufe is either an alternating walk which contains an alternating cycle
(as the last part of the walk) or it is an alternating walk which cannot be continued. More

precisely

Definition 3.3. (SCHLAUFE) An alternating walk H := iyiy...4; is a schlaufe if either

(i) There is a node i, € {iyiz...4} with & # [ such that i, = 4, and (k —1[) mod 2 = 0.
Furthermore for any two nodes i; and iy, in {i1%2...%,_1} with ¢; =4, and j # h it holds that
(j —h)mod 2 =1.

(ii) At node 4; there is no other node ;41 such that the alternating walk could be extended
with the “unmarked” (unused, see Algorithm [2)) link (4;,4;41).

In German schlaufe corresponds to “loop”, “bow” or “ribbon” (its plural is schlaufen); the
latter translation is evocative of our meaning here. In the first case the schlaufe will coincide
with an alternating walk which includes exactly one alternating cycle Visually schlaufen
of the first type, with the nodes appropriately placed, will look like loops and ribbons. In
the second case the schlaufe does not include an alternating cycle.

Associated with a schlaufe, denoted - in a small abuse of notation — by say R, isa K x K
violation matrix which records the number of extra links from group k to group [ generated
by switching the alternating cycle in R (if there is one). Consider an alternating rectangle,
C := abcda , consisting of two boys and two girls. If initially one boy directs a link to the
other and one girl directs a link to the other, then after switching the cycle the violation

matrix will equal:

Ego \Alter | Boy Girl
Boy -1 1
Girl 1 -1

23The requirement that iy, = 4; and (k —1) mod 2 = 0 ensures that C' = iiky1...7% is an alternating cycle
(imposing even length). The “furthermore...” requirement ensures that if another node is visited multiple
times it does not form an alternative cycle (imposing non-even length). See Figure |§] for an example.
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After switching the cycle there are too few same gender links and too many mixed gender
ones.

We call a sequence of schlaufen R = (Ry, ..., Ry) feasible if (i) the cycles of the schlaufen
are link disjoint and (ii) the sum of their violation matrices is zero (and for ¢ < k the sum of
their violation matrices is not zero).

Conventional MCMC adjacency matrix re-wiring algorithms work by switching short cy-
cles (e.g., alternating rectangles and compact alternating hexagons as in |[Rao et al. (1996)).
Switches of this type, while preserving the in- and out-degree sequence of the network will
typically generate networks with the wrong inter-group link structure (i.e., non-zero link vi-
olation matrices). Our approach to solving this problem involves switching many alternating

cycles simultaneously such that their individual link violation matrices sum to zero.

3.2 The MCMUC algorithm

Let S =s and M = m be the degree sequence and cross link matrix of the network in hand.
In order to a draw, say D', from Dg,, we (i) start with a realization of (s,m), say D, (ii)
randomly construct (link disjoint) schlaufen, and (iii) switch any alternating cycles in them.
While switching cycles will preserve the degree sequence, it may — as discussed earlier — result
in a graph without the appropriate cross link matrix. In order to ensure that D’ has the
appropriate cross link matrix, we construct schlaufen until either the sum of their violation
matrices equals zero or we stop randomly. If the sum of the schlaufen violation matrices is
zero we move to D’ from D by switching the cycles, otherwise we set D’ = D. Proceeding
in this way ensures that D’ is, in fact, a random draw from Dg,. After sufficiently many
iterations of this process we show that a graph constructed in this way corresponds to uniform
random draw from Ds,. A formal statement of the procedure is provided by Algorithm [1}

Algorithm [1| uses a subroutine to find schlaufen. This subroutine, described in Algorithm
finds and marks a schlaufe in the graph.

Appendix [A.4] provides additional discussion of the MCMC algorithm as well as proof of

its correctness.

Theorem 3.1. Algorithm[1) is a random walk on the state graph ® which samples uniformly

a network from Dg y for 7 — oo.

Proof. See appendix [A.4] O
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Algorithm 1 MARKOV DRAW ALGORITHM

Inputs: An adjacency matrix d € Dg ,; a mixing time 7
Procedure:

1. Set t = 0.
2. With probability 1 — ¢ go to step 3, with probability ¢ go to step 4.

3. find and mark a schlaufe (see Algorithm [2)):

(a) if the sum of the schlaufen violation matrices is zero, then
i. switch the cycles in the schlaufen (changing the adjacency matrix d),
ii. unmark all links,
iii. go to step 4.
(b) else
i. with probability %, go to step 3 or
ii. with probability 3, unmark all links and go to step 4.
4. Sett=t+1

(a) if ¢t = 7 then return d
(b) else go to step 2

Output: A uniform random draw d from Dg y,
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Algorithm 2 SCHLAUFEN DETECTION ALGORITHM
Inputs: An adjacency matrix d € D,y (this network may have marked links in it)
Procedure:

1. Choose an agent/node, say i, at random.
2. Mark agent 7 as active and

(a) if feasible, randomly choose one of i’s (unmarked) outlinks, say to j, and go to
step 3;

(b) else (i.e., no unmarked outlinks available) go to step 6.
3. Mark edge ij, chosen in step 2 and

(a) if agent j is already marked passive, then go to step 6;
(b) else go to step 4.

4. Mark agent j, chosen in step 3, as passive and

(a) if feasible, randomly choose an agent, say k, from among those who do not direct
links to 7, and go to step 5,

(b) else go to step 6.
5. Mark edge k7, with k the agent chosen in step 4, as passive and

(a) if agent k is already marked active, then go to step 6;
(b) else go to step 2.

6. return the (marked) adjacency matrix, the constructed schlaufe and its violation matrix.

Output: A schlaufe, its violation matrix and a marked adjacency matrix.
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Figure 3: Nyakatoke Village Risk-Sharing Network
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4 Empirical illustration: risk-sharing links when agents
value bridging capital

De Weerdt| (2004) studied the formation of risk-sharing links across 119 households in the
rural village of Nyakatoke (located in Tanzania). He asked all adult individuals in the village
who they could rely upon for help and, from their responses, constructed a network of directed
links across households!} The resulting set of links is shown in Figure

Modeling the configuration of links shown in Figure |3|as a NE of a complete information
network formation games is reasonable in our setting. For example, the observed network
may correspond to the long-run rest point associated with an un-modeled dynamic network
formation process. The small village rural setting of Nyakatoke is consistent with agents
having high levels of information about their own and others’ payoffs. Finally we interpret
the [De Weerdt (2004) prompt at face value: households report who they would — in fact —
turn to in a time of need.

Here we assess whether households value “bridging capital”, as suggested by [Burt| (1995)
and formalized in game-theoretic terms by Kleinberg et al.| (2008) and others. If k directs
a link to ¢ but not to j, then i, by directing a link to j, may position herself to serve as a
“bridge” or “broker” between k and j. See Figure above.

In the formal model of Kleinberg et al. (2008) agents gain utility from positioning them-
selves on length two paths connecting agents not directly connected themselves; however such
utility gains are decreasing in the number of “rival” length two paths (i.e., those with other

agents in the center). This suggest, for example, a network benefit function of

Dy;D;j (1 — Dy;)
Z Z max 1 kzl Dlel] (1k— Dk])) <32)

In this formulation any “bridging” capital is shared equally across all agents [ on length two
paths from j to k (with arc jk absent). For example, if there are two bridging agents situated
between j and k, they each get half the benefit and so on. The marginal network benefit of

edge 77 is thus DwDi; (1= Dy;)
s (d) = kitlig \L — Dk 7
i (d) Zmax(l,ZlelDlj (1 — Dy;))

k#j

(33)

from which the form of the locally best test follows.

24The prompt used by De Weerdt| (2004) is suggestive of both mutuality and directionality, leading to
some ambiguity in whether to interpret the collected edges as undirected or directed. |Comola and Fafchamps
(2014)) present evidence suggesting that the links given by households are directed. Specifically that they
indicate to which other households they would turn to in the event of need. It is this interpretation that we
give the links here.
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From De Weerdt (2004) we also know that household land and livestock wealth, as well as
religion (Catholic, Lutheran or Muslim), are important drivers of link formation in Nyakatoke.
We divide households into three wealth bins, which in conjunction with religion, partitions
households into nine groups; X; consists of the nine resulting group membership dummies
with the 81 elements of A parameterizing any homophily/heterophily across these groups.
The remaining null model parameters are the 238 = 119 x 2 household-specific in- and out-
degree heterogeneity parameters. This gives dim(J) = 2 x 119 + 9 x 9 = 319 null model
“nuisance” parameters. It is hard to imagine a testing approach with good properties in this
setting which would not involve “conditioning away” the null model parameter.

One aim of our empirical illustration is to compare the performance of the locally best
test statistic, which follows naturally from the form of the [Kleinberg et al. (2008) network
benefit function, to that of heuristically motivated ad hoc test statistic.

It is not entirely clear how to form a heuristic test with power to detect the more quali-
tative alternative “agents like to bridge disconnected groups”. Indeed, this lack of clarity is
one argument for using a locally best test. Such tests proceed in a principled way from an
explicit network benefit function.

After some experimentation we settled on the difference between the 90th and 50th per-
centiles of the empirical distribution of betweenness-centrality across agents in the network
as a suitable ad hoc test statistic (other measures of dispersion give similar results).

The reasoning behind this choice is as follows. As before, let d denote the undirected
network obtained from d. Next let gbj k(~) denote the number of paths between j and £ in
d which pass through i and ¢/*(d) the total number of paths connecting j and k (whether
they pass through i or not).

Agent i’s betweenness centrality (Wasserman and Faust|, 1994, p. 190) equals:

ch< ) Z e ;1 (34)

Equation is maximal when 7 is situated on every path between every pair of connected

agents. When d is connected, this maximal value equals the number of dyads excluding i or

(N2—1) _ (N—1)2(N—2)_

The “90-50 gap” in the empirical distribution of CPC <a> measures right-tail inequality
in betweenness centrality. If agents value bridging capital, then it is plausible that the top 10
percent of agents in the network will acquire substantially more of such capital — as proxied
by betweenness centrality — than the typical (or median) agent.

The intuition behind this claim is that acquiring bridging capital is inherently rivalrous;

the addition of links by other agents may reduce one’s own betweenness centrality. Competi-
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tion to accumulate bridging capital should therefore lead to more dispersion in betweenness-
centrality across agents (than in a reference set of null model graphs). Winners of this
competition (the 90th percentile) will have more bridging capital than the typical agent (the
50th percentile) in the network.

We wish to emphasize that the “ad hoc” descriptor of this statistic is apt. The reasoning
outlined above is both meandering and speculative; we provide it simply as an example of
how one might select a test statistic heuristically. In contrast, an advantage of the formalism
of an explicit network benefit function is that it gives precision to the alternative of interest
(in turn suggesting a suitable, in fact, optimal test statistic).

The left panel of Figure (4] plots simulation estimates of the distribution of the 90 — 50
betweenness-centrality gap across three reference sets of networks: (i) Erdos-Rényi graphs
with the same number of links as observed in Nyakatoke, (ii) the set of all graphs with the
same in- and out-degree sequences as observed in Nyakatoke, and (iii) the set of all graphs
which additionally constrain the number of cross-group links to be the same as observed in
Nyakatoke. The vertical line in the figure marks the value of the actual 90 — 50 betweenness-
centrality gap in Nyakatoke.

The three reference distributions in Panel A allow us to undertake three model adequacy
tests: is Nyakatoke well-described by (i) the Erdos-Rényi model, (ii) a directed S-model
which places equal probability on all networks with the same in- and out-degree sequence
as in Nyakatoke, or (iii) by the full baseline model described above (which additionally
accommodates homophily)? In all three cases we reject, but notice that as we enrich the
null model the simulated reference distributions shift to the right@ Put differently a portion
of the dispersion in betweenness-centrality across households observed in Nyakatoke is likely
a by-product of degree heterogeneity and homophily. The rightward shifts in the reference
distributions as we enrich the null model is indicative of how using a realistic null model may
be important for avoiding spurious rejections in practice. That said, our decisive rejection
of even the 319 parameter baseline model model indicates that degree heterogeneity and
wealth /religion homophily cannot explain all of the inequality in betweenness-centrality we
observe across agents in Nyakatoke.

The right panel of Figure (4] plots the null distribution of the locally best test statistic
for the alternative that households gain utility by bridging disconnected pairs of agents (as
formalized by [Kleinberg et al. (2008)). If we are willing to maintain that the true data

Z50f course one can also start with a specific test statistics and then reverse engineer a network benefit
function for which it is locally best. We do not advocate proceeding in this way in practice, but such an
exercise can be useful for understanding the game theoretic implications of test statistics initially proposed
in other settings. We thank the co-editor for this observation.

26The incremental effect of additionally controlling for homophily is modest.
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Figure 4: Testing for bridging/brokerage preferences

Model adequacy tests Locally best test
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Source: [De Weerdt (2004) and authors’ calculations.

Notes: Panel A presents MCMC estimates of the distribution of the 90 — 50 betweenness-
centrality gap across agents for three reference sets of networks (as listed in the legend).
Panel B shows the null distribution of the locally best test described in the main test. In
this panel the reference set is all networks with the same in- and out-degree sequences and
cross-link matrix as observed in Nyakatoke.
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generating process is either in the null or specified alternative model space, we can interpret
a rejection as evidence for vy being positive. To implement this test we replace d, with its
maximum likelihood estimate (MLE) computed under the null As is clear from Panel B
of Figure |4, we decisively reject the null.

Panel B is also suggestive of the power gains associated with the locally best test. If we
were to standardize each of our test statistics using their respective reference distribution’s
mean and standard deviation, it is obvious that the locally best test statistic is more extremely
positioned in the right tail of its null distribution (the Monte Carlo experiments reported in
the Supplemental Web Appendix confirm the power advantages of the locally best test).

Using Algorithm [I|requires a choice of the mixing time parameter 7. Although the mixing
properties of our MCMC procedure are largely unexplored, we have found - by Monte Carlo
experimentation — that choosing 7 such that each edge in the input graph is, on average,
swapped at least once before the resulting output is considered a uniform random draw from
the target set to yield acceptable results in practice. We use this approach here (also see
the Python Juypter Notebook in the Supplemental Materials). The required value for 7 is
increasing in the dimension of the nuisance parameter § and especially in the dimension of

A. Hence the speed of the simulation algorithm declines in both N and K.

5 Limitations and future research

The analysis in this paper, like much of the wider econometrics literature on games, is
likelihood based. Our null model is fully parametric (albeit flexibly-so), while the alternative,
due to the unmodeled NE selection function, is semiparametric. Under correct specification
our test reveals whether vy = 0 or 7y > 0 (with a researcher-specified ezact Type I error rate,
and a locally best Type II error rate). That is, we present a method for detecting whether
agents form links “strategically” in the presence of any pattern of homophily and degree
heterogeneity allowed by the baseline null model.

It would be interesting to know whether detecting strategic interaction in the presence
of arbitrary homophily on observables and degree heterogeneity is possible. We know from
the panel data literature that detecting state-dependence in the presence of heterogeneity is
non-trivial and that modeling details matter (e.g., (Chamberlain, |1985). Analogous questions
arise here.

Our set-up assumes that the researcher is able to a priori partition the support of agents’

2TThe computation of this MLE is described in detail by [Yan et al.| (2018)) and implemented in our Python
package ugd for “uniform graph draw”. Additional discussion can be found in the Python Jupyter notebooks
included in the Supplemental Materials.
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covariates into K regions along which all homophilous sorting occurs. In practice this is an
approximation. Developing data-based discretization rules (e.g., using clustering algorithms)
and formalizing the nature of the approximations involved would be useful. It is possible that
recent results on randomization inference by (Canay et al. (2017) could be useful for such an
analysis.

We conjecture that, for K sufficiently large, further increases in it will reduce power. In
contrast, too coarse of a covariate partition could lead the researcher to reject not because
of any strategic interaction, but simply because the baseline model is misspeciﬁed.@ Note
our test correctly rejects the null in this case, the subtlety centers upon interpretation. Such
concerns arises in other specification testing problems Our test could also reject in the
presence of homophily on latent attributes.

Key to our set-up is the exponential family structure (under the null) induced by the
assumption of logistic random link-specific utility. While this is a strong assumption, it
comes with considerable pay-off: we are (i) able to ezactly control size in (ii) the presence
of a high dimensional nuisance parameter while (iii) also making no assumptions about
equilibrium selection. Exponential family structure has proved highly fruitful in other areas
of econometrics; applications in panel data being most closely connected to the present
setting. Our similarity and local optimality results build on classic results in the theory of
testing in exponential families (e.g., [Ferguson (1967) and Lehmann and Romanol (2005)).

Recent work studies dyadic regression in settings richer than our baseline model (e.g.,|Gao,
2020). Adapting such work to our testing problem would be an interesting area for future
research. The loss of exponential family structure would mean a loss of exact size control
and optimality. However, the insight that score tests in the direction of certain alternatives
can be constructed without modeling the details of NE selection should still hold. Any such
extension would require difficult asymptotic arguments; but we expect insights from the
large- N, large-T panel data literature (e.g., Fernandez-Val and Weidner, 2016) as well as the
large games literature (e.g., Menzel, 2016) to be useful in any such extension.

While obvious, and generic to most testing problems, it is important to understand that
our test may have low power in some directions (in extreme cases even power equal to
size). As an example imagine agents gain utility from linking with popular agents (as in
preferential attachment models), such that g; (d) = >_,; di; [Zk i dkj:|. This model yields
sij (d) = >4 ks, which is almost equal to the in-degree of agent j. Hence the distribution

of s;; (D) across Dg ym will be nearly degenerate. Examples of this type are not unique to our

28We thank the referees for this observation.

29For example a Sargan-Hansen test of over-identifying restrictions might reject in the linear instrumental
variables setting because one of the instrument exclusion restrictions is violated or because of treatment effect
heterogeneity; with rather different implications for how to proceed in each case.
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setting. See Lehmann and Romano| (2005) for general impossibility results.

Finally, while we are able to prove that our simulation algorithm works for 7 “large
enough”, we don’t currently have a formal handle on the mixing properties of our MCMC
algorithm. This is not just a limitation of our work, but of much of the related work in the
discrete math and computer science literature (e.g., (Cooper et al. (2007) and Erdos et al.
(2018)). Our limited simulation experiments suggest relatively fast mixing.

These limitations notwithstanding, we nevertheless see potential for the widespread use
of the methods presented in this paper in empirical social and economic network research
(and, with modification, in other settings where strategic interaction is important). We
hope that the ability to easily embed formal game-theoretic models of network formation of
the type surveyed by, for example, |Jackson| (2008) and (Goyal (2023) into heterogeneity-rich
dyadic linking models will be attractive to empirical researchers. While not emphasized here,
we also expect our simulation algorithm to find use in other settings where binary matrix
simulation is an important part of researchers’ tool-kits (e.g., |Gotelli, 2000). Finally our
focus on score type tests may represent a fruitful direction for further research on testing in
incomplete models (e.g., (Chen and Kaido, 2021).

The Supplemental Web Appendix shows how to adapt our results to bi-partite networks.
There we show how ideas in this paper might be used to, for example, study airline entry
into different routes as in |Ciliberto and Tamer (2009). The set-up allows for complex airline
preferences over their own route map as well as the route maps chosen by their competitors.
We also shows how our simulation algorithm can be used for more traditional conditional like-
lihood estimation and inference problems. A carefully annotated Python Jupyter Notebook
illustrating how the methods in this paper work in practice is available in the Supplemental

Materials.
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